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GENERAL INTRODUCTION 

For the last decade, the Trahanovsky research group has focused on the study 

of various reactive molecules such as benzocyclobutadlene and o-gulnodlmethanes 

(o-QDM's) derived from benzene, furan, thlophene, and ferrocene. These types of 

molecules are very reactive and dimerize or polymerize even at low temperature. One of 

our group's interests is to understand the dimerizatlon mechanism of these molecules. 

Section 1 describes the preparation and dimerization product analyses of 

a-methyl substituted 2,3-dimethylene-2,3-dihydrofurans. Insights provided by these 

results into the mechanism of the dimerization of 2,3-dImethylene-2,3-dihydrofuran 

are discussed. 

In Section 2, the preparation of a-methyl, a-cyclopropyl, a-t-butyl, and 

a-mesityl substituted o-xylylenes, the kinetics and product analyses of their 

dimerlzatlons and their Diels-Alder reactions with methyl methacrylate as a dienophile 

are described. On the basis of the trends of the regloselectivity, mechanisms for the 

Diels-Alder reaction and for the dimerization are proposed. 
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EXPLANATION OF DISSERTATION FORMAT 

This dissertation has been written using the alternate dissertation format and 

consists of two sections as complete papers in the style suitable for publication in a 

journal published by the American Chemical Society. As such, each section has its 

own numbering ^stem and each section's references follow It. The research described 

in the results and experimental sections were done by the author unless otherwise 

indicated. 
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SECTION 1: THE EFFECTS OF a-METHYL GROUP SUBSTITUTION ON THE 
DIMERIZATION PRODUCTS OF o-QUINODIMETHANES DERIVED 
FROM FURAN 1 
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INTRODUCTION 

2,3-Dimethylene-2,3-dihydrofuran (1), the furan-based o-quinodimethane 

(o-QDM), has been studied extensively by our research group during the past 

decade.2-5 Much of our work has focused on the mechanism of the dlmerizatlon of 1 

which occurs readily in solution at temperatures above -30 °C. Of special interest is 

the fact that the dlmerizatlon gives almost quantitatively the head-to-head [4+4] dimer 

2.2 On the basis of a secondary deuterium kinetic isotope effect study, it was concluded 

CHg 

CHa 

1 2 

that the cyclization involves rate-determining formation of diradical 3, followed by 

rapid closure of the diradical to give the dlmer.3« 5a Additional support for this 

CHa CHg 

3 

two-step mechanism was obtained from a study of the effects on the dlmerizatlon rates 

and products of a fert-butyl group on either the 3-methylene or 2-methylene group. 

A question that has not yet been answered is why does the intermediate 

diradical 3 close to give predominantly the [4+4] dimer.® Some simple derivatives of 1, 

give a fair amount of the [4+2] dimers expected from closure of the Intermediate 

diradlcal^a.b and many indole-based,^ thiophene-based,® and benzene-based® o-QDM's 

give predominantly or exclusively [4+2] dimers. For example, the tert-butyl derivative 

45b gives a high yield of two stereolsomerlc [4+2] dimers (5) and a small amount of 

[4+4] dimer 6, the dimers expected from diradical 7. 



www.manaraa.com

5 

O 

4 

J,CH2 

C(CH3)3 (CHglgC C(CH3)3 

95 %, two stereoisomers 

(CHajgC 

C(CH3)3 (CHslaC 

C(CH3)3 

5 %, one stereoisomer 

One of the possible factors affecting the mode of cycllzatlonl ° is the 

conformation of the dlradlcal which might be determined by the relative orientation of 

the o-QDM monomers in the transition state of the first step of dimerization. Collision 

of the monomers may lead to cisoid transition state 8 or transold transition state 9 

which develop to dlradlcal conformations 10 and 11, respectively, and each 

O-

---HoC 

CH2 HgC 
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conformation may lead to different cyclization products. If cyclization of the diradicals 

occurs before 10 and 11 equilibrate, the relative rate of formation of 10 and 11 may 

control the distribution of cyclization products. On the other hand, if the equilibrium 

between 10 and 11 is established before cyclization occurs, the existence of two 

different transition states, 8 and 9, will make no difference in the overall cyclization 

process. 

In an attempt to gain Information about the formation of the intermediate 

diradlcal and Its closure to products, we Initiated a study of the derivatives of 1 with 

methyl groups on the termini of the reactive diene unit, o-QDM's 12, 13, and 14. We 

or 
CHMe Cf 

O-^ 

CHa 

CHMe 

^^CHMe 

° CHMe CHg 

12 13 14 

expected that a methyl group on the 3-methylene group would have the 

E configuration and this would allow us to probe the relative Importance of transition 

states 8 and 9 by studying the stereochemistry of the final dlmers. The results of this 

study are reported in this section of the dissertation. 

Me / 

Me Me 

CHg CHg^ ° 
o*^ r^o  

CHa CHa 

"trans" 
dlmers 

•CH, 

\ 
CH, 

HjC 
Me H VQ 

Me Me 

dimer 
CHg CHa 
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RESULTS 

Although pyrolysis has been used extensively in the prep'aration of 1 and its 

derivatives, it could not be used In the present study. The major problem arising from 

pyrolysis is the competitive [1,5] hydrogen shift which can occur at high 

H 

temperature. To avoid this interference, substituted 2,3-dlmethylene-2,3-dIhydro-

furans 12, 13, and 14 were prepared in the solution phase at room temperature by 

the fluoride induced 1,4-conjugative elimination from the appropriate trimethylsilyl 

derivative. 

CHR' 

^ 'CHR 

R 

For the generation of o-QDM's, the trlmethylammonium group is the common 

leaving group^b-e.lS because of difficulty in preparation of the approplate 

trlmethylammonium salt, we switched to the acetate as the leaving groups 

Precursors 15, 16, and 17 were synthesized as follows: 
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OAc OAc y—OAc 

TMS TMS TMS 

15 16 17 

The synthesis of pecursor 15 Is summarized In Scheme 1. Selective sllylatlon of 

methyl furancarboxylate 18 at the 2-methyl group was achieved by use of 

chlorotrlmethylsllane and two equivalents of lithium diisopropylamide at low 

temperature to give ester 19 without competitive methylation at the 5-position.^®'^® 

Direct reduction of ester 19 to alcohol 20 by LiAIH^^/ followed by modified Collin's 

oxidation provided aldehyde 21.^® Addition of methyl lithium to aldehyde 21 followed 

by acylation of alcohol 22 gave precursor 15 . 

The synthesis of 16 Is outlined In Scheme 2. On treatment of 19 with LDA, 

followed by Mel in THF at -78°C, a-methylation adjacent to the trimethylsilyl group 

was achieved to afford 23. However, co-generation of overmethylated product 24 could 

not be avoided. Purification of 23 from this mixture is necessaiy since the side 

products derived from 24 will interfere with the final dimerizatlon product analyses. 

Purified 23 was then subjected to LIAIH4 reduction followed by acetylatlon of 25 to 

provide 16. 

The synthesis of 17 is shown in Scheme 3. Alcohol 25 was oxidized by modified 

Collin's reagent to provide aldehyde 26. Treatment of aldehyde 26 with methyl lithium 

followed by acetylatlon of alcohol 27 led to precursor 17. Since the regio-structural 

assignments of the dimerizatlon products cannot be obtained simply from their 

NMR spectra, the deuterium labelled dimers were desired. In our study, deuterated 17 

was prepared from deuterated alcohol 25 which was derived from the reduction of 23 

with LIAID4. 
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COOMe 

o 

18 

COOMe 

19 
TMS 

20 

CHgOH 

TMS 

CHO OH 

TMS TMS 

OAc 

TMS 

21 22 15 

a. 2LDA. TMSCl. -780C; b, LIAIH4: c. CrOs; 2Py: d. MeLi; e. AcCl. Py. 

Scheme 2 

COOMe COOMe 

R 

TMS 

19 

TMS 

23R = H 
24 R = Me 

OAc 

16 
TMS 

a, LDA, Mel; b, LIAIH4; c, AcCl. Py. 

CHgOH 

TMS 

25 
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Scheme 3 

COOMe CHalDjaOH 

a n-^ b ^oV 
23 

TMS 
^oV 

25 
TMS 

CH{D)0 

CV 
26 

TMS 

27 
TMS 

a. LiAlH4 or LIAID4; b, CrOa. 2Py; c, MeLl; d, AcCl. Py. 

TMS 
17 

Generation and dlmerization of 12. Fluoride induced 1,4-conJugative 

elimination of trimethylsUyl acetate from IS was carried out in acetonitrile using an 

excess amount of tetrabutylammonium fluoride (TBAF) to give the reactive 3-ethylId-

ene-2-methylene-2,3-dihydrofuran (12). The existence of 12 was first proved by a 

trapping experiment. In the presence of a large excess of methyl acrylate (10 eq.), 12 

was trapped nearly quantitively to give a mixture of Diels-Alder adducts 28.^ By 

GC/MS and NMR analyses, four regio- and stereo-isomers were identified. Direct 

CHMe 

12 

fl 

COOMe 
Me Me 

COOMe 

COOMe 
28 

evidence for the existence of 12 was obtained by NMR spectroscopy. Due to Its low 

molecular weight and high volatility, o-QDM 12 was generated and distilled 

immediately along with the deuterated solvent under vacuum at ambient temperature 



www.manaraa.com

11 

and the mixture was condensed in a cold trap at -78°C. After the distillation, the 

condensate was warmed to room temperature and the NMR spectrum was obtained 

(Figure 1). Interestingly, o-QDM 12 is relatively stable and only dimerlzes or 

polymerizes slowly at room temperature. The spectrum of 12 shows that only one 

stereoisomer was produced. Since both E and Z isomers of o-QDM 12 would give rise 

to the same NMR pattern, the pattern itself does not reveal the stereochemistry of 

12, but some stereochemical conclusions can be drawn from the chemical shifts of 12. 

Fortunately, the very unreactive tert-butyl derivative o-QDM E 29 was prepared by 

Huang^^ by flash vacuum pyrolysis (FVP) The chemical shifts of the olefinic protons 

of o-QDM's 12 and £-29 are nearly identical and therefore we assign the 

E-conflguration to o-QDM 12. 

H (CHglgC 

C-CH3 /-H 

£7-12 Z12 29 

In the absence of a trapping reagent, 12 dimerlzes to give a complicated 

mixture of dimers (-50%) and polymers. A similar yield of dimers was obtained in both 

a TBAF solution or in the distillate which suggests that polymerization of 12 is not a 

TBAF induced reaction. 

GC/MS analysis of the product mixture shows that seven dimers were formed 

in the dimerization of 12 (Table 1). Five of them were readily separated and 

characterized by NMR spectroscopy. Two of these five are head-to-head [4+4] 

CHg 

C—H 

cl. 
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Figure 1. NMR spectrum (300 MHz, In CD3CN) of 3-ethylIdene-2-methyl-
ene-2,3-dlhydrofuran (12) recorded at room temperature (q: o-QDM 12, 
w: H2O from TBAF salt, s: CHD2CN In ds-acetonitrile). • 
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Table 1. Dimerlzatlon products of 3-ethylldene-2-methylene-2,3-dlhydrofuran 
(12) 

Dlmer Number of Mode of Number of GC 
possible cycllzatlon isolated retention time, 

diastereomers dimers (yield. %) 

30 and 31 

Head-to-head 
[4+4] 

23.27 (32 %)« 30 
25.25 (10 %)a 31 

33 and 34 

Head-to-tail 
14+2] 

Head-to-tall 
14+2] 

Head-to-tall 
[4+4] 

23.94 (10%)° 32 

21.44 (24 0/0)033 
21.57 (18 0/0)034 

22.79 (-4 0/0)^ 35 

35 and 36 

37 Unknown 22.61 (-2 %)C37 

"Ô The dlmer was Isolated and Identified by ^H NMR spectroscopy. ' 
^ The dlmer was identified by the GC/MS and the ^H NMR spectrum of the dimer 

mixture. 
The dlmer was Identified by the GC/MS anaylses. 



www.manaraa.com

14 

adducts 30 and 31 (42 %) while the other three are head-to-tail [4+2] adducts 32-34 

(52 %). The assignments of 30 and 31 were based on the AA'BB' pattern around 8 2.5 

ppm in both of the NMR spectra. The structure of 32 was confirmed by both the 

characteristic quartet at 8 4.8 ppm which results from the signal for the exo-methlde 

proton adjacent to a methyl group and the typical AB pattern around 8 3.0-2.2 ppm. 

The assignments of 33 and 34 were based on the observations of a typical signal for 

the exo-methylene protons with no AB quartet in their NMR spectra. In addition, 

these assignments were further confirmed by decoupling experiments. Dimer 35 could 

not be isolated and identified successfully until FVP of 34 was carried out. FVP of 34 

gave rise to a mixture of 35 and 36 in a 2 to 1 ratio. They were identified by GC/MS, 

and NMR analyses. On the basis of the identical retention times, fragmentation 

patterns in the GC/MS and chemical shifts in the NMR spectra, 35 was identified 

as a minor product in the dimerlzation. Dimer 37 could not be isolated and identified, 

but the GC/MS analyses of 37 shows a fragmentation pattern very similar to those of 

the other dlmers. 

Generation and dimerlzation of o QDM 13. Fluoride induced 1,4-conJug-

ative elimination of trimethylsilyl acetate from 16 in acetonitrile led to reactive 

2-ethylidene-3-methylene-2,3-dihydrofuran (13). By use of the same technique applied 

to o-QDM 12, the NMR spectrum of 13 was obtained (Figure 2a). However, due to 

its higher reactivity towards dimerlzation, o-QDM 13 dlmerized during the NMR 

acquisition process, and therefore small amounts of dlmers also showed In the 

NMR spectrum. Interestingly, unlike o-QDM 12, two different sets of oleflnlc proton 

signals, labelled 13a and 13b, are observed in the spectrum. The signals of the major 

Isomer, 13a, and the minor isomer, 13b, disappeared with time leaving only signals 
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(b) 

D 

vu 

13a,b 

13a 

13a 13a 
13b 

13a 13b 13b 

13b 

5.0  PPM 5 .5  6.0 7.0 6.5  

Figure 2. NMR spectrum (300 MHz. In CD3CN) of 2-ethylldene-3-methyl-
ene-2.3-dihydrofuran (13): (a) recorded right after the preparation of 13 
(13a: 2Z-13, 13b: 2E-13, D: dimers); (b) recorded 24 h later (D: dimer). 
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from dimers (Figure 2b). Because of the nearly Identical oleflnic proton chemical shifts 

of 13a and Z-4, which was prepared by FVP.^b we tentatively assign the Z-

conflguration to 13a and the E-conflguration to 13b. 

Dimerlzation of 13 led to a mixture of seven dimers. Six of these were isolated 

and identified as head-to-head dimers 38-43 (Table 2). DIsportionation product 44 

could not be Identified until EVP of the dimer mixture was performed. The assignments 

of 38 and 39 were based on both the characteristic AA'BB' signals of the 3-ethylene 

bridge protons and the quartet which results from the 2-ethylene protons adjacent to 

the methyl group. On the other hand, the assignments of 40-43 were supported by 

the characteristic oleflnic quartets resulting from the exo-methlde protons adjacent to 

a methyl group and the quartets arising from the methylene bridge protons adjacent 

to the other methyl group. When the dimer mixture was subjected to EVP at 630 °C, a 

mixture of six components, 38, 39 and 44-47, was obtained. Fragmentation product 

45 was distilled along with deuterated solvent Introduced after the pyrolysis and 

H C(CH3)3 CHa 

Z 13 E-13 Z-4 

45 46 and 47 

Table 2. DImerlzatlon products of 2-ethylidene-3-methylene-2,3-dihydrofuran 
(13) 
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Number of 
possible 

diastereomers 

Dimer Mode of 
dimerlzation 

Number of 
Isolated 
dimers 

GC 
retention time, 

(yield, %) 

38 and 39 

40-43 

Head-to-head 
[4+41 

Head-to-head 
[4+2] 

Head-to-head 
dlsproportio-

nation 

16.36(12 %P38 
17.59 (18 %)" 39 

15.90 (33%)" 40 
16.39 (12%)" 41 
17,14 (18%)" 42 
17.24 ( 4%)" 43 

16.04 (~2 %)b 44 

"" Compound was isolated and identified by ^H NMR spectroscopy. 
^ Compound was identified by GC/MS analysis. 

identified as the major product and significant amounts of disportionation products 

44 (15 %) and 46 (10 %) were isolated. The assignment of 44 is supported by the 

observation of the signals of the ethyl group, four ethylene bridge protons (AA'BB' 

pattern) and three vinyl protons at 6 5.07, 5.55 and 6.41 ppm. Similar results were 

obtained in the pyrolysis of the mixture of [4+2] dimers 40 and 41. We concluded that 

44 is a minor component in the original dlmer mixture because the GC retention time 

and mass spectra of one of the original products matched those of 44 obtained from 

the FVP of the dimer mixture. The structural assignment of 46 Is based on the 

observation of the signals for the ethyl group and oleflnic protons on the bridge at S 

6.52 ppm. The structural assignment of 47, the cls-trans Isomer of 46 is based on a 

mass spectrum which Is very similar to that of 46. 
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Generation and dimerization of o-QDM 14. Fluoride induced 1,4-conJug-

atlve elimination of trimethylsilyl acetate from 17 in acetonltrile led to the reactive 

2,3-ethylldene-2,3-dlhydrofuran (14). By utilizing the same vacuum distillation tech

nique, the NMR spectrum of the reactive Intermediates was obtained (Figure 3). 

Again, two sets of oleflnic signals are observed in the spectrum. Since we know that 

introduction of a methyl substituent at the 3-methylene position leads to a single 

isomer E-12 while a methyl substituent at the 2-methylene position leads to a pair of 

els-trans Isomeric o-QDM's E-13 and Z 13, we concluded that 14 is a mixture of ZE-14 

and EE-14. 

CH3 ÇH3 

Ci,-' 
CH3 H 

ZE-14 EE-14 

O-QDM's ZE-14 and EE-14, condensed at low temperature, dimerlzed slowly at 

room temperature to give rise to a mixture of four separable major dlmers 48-51 

(Table 3) and fourteen minor dlmers, which were identified by GC/MS analyses. Since 

the head-to-head, head-to-tail and tail-to-tall (4+2J dlmers cannot be distinguished 

simply by NMR spectroscopy, deuterium isotope labelling experiments were 

performed. Separation of the deuterated dlmers 48-51 on silica gel liquid 

chromatography afforded essentially pure dlmers which were suitable for NMR 

analyses. The disappearance of the ethylene bridge proton signals on the NMR 

spectra of deuterated 49 and 50 strongly supports the head-to-head [4+2] 

assignments. The relative configuration between methyl substltutents on the ethylene 
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0 PPM 2 6 8 4 

Figure 3. iH NMR spectrum (300 MHz. In CD3CN) of 2,3-ethylIdene-2.3-dihydro-
furan (14) recorded at room temperature (q: dlastereomerlc o-QDM 
2Z.3E-14 and 2E.3E-14. w: HgO from TBAF salt, s: CHD2CN in 
ds-acetonltrlle). 
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Table 3. Dlmerlzation products of 2,3-dIethylIdene-2,3-dlhydrofuran (14) 

Dimer Mode of 
cycllzation 

Retention time, 
(yield. %) 

{D)H. (H)D 

48 and 54 

(D)H • 

(D)HiH(D) 

Head-to-head 
14+4] 

Head-to-head 
[4+2] 

Head-to-head 
[4+21 

Head-to-head 
[4+4] 

52.24 ( 6 0/0)^48 
58.06 ( 2%)bS4 

54.15 (42 %)a 

58.00 (39 %)° 

60.43 ( 6%)a 

51 
The dimer was isolated and identified by ^H NMR spectroscopy. The structure 
was further confirmed by deuterium Isotope labelling experiment. 

^ The dimer was identified by comparison the retention time and MS pattern 
with those of the pyrolysis products of 49 
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bridge of 49 was deduced from the spin-spin coupling constant between the methide 

protons on the bridge. The spin-spin coupling constant with JHCCH=9-5 HZ indicates 

that the methide protons on the ethylene bridge are in the anti-position (with a 

dihedral angle ca. 180 However, the moderate coupling constant (JHCCH = 6.6Hz) 

of 50 does not lead to any definite assignment. In order to establish the 

stereochemistry of 50, dimers 49 and 50 were subjected to FVP. 

Pyrolysis of deuterated 49 generated a mixture of fragmentation products 52 

emd 53 along with three [4+4] dimers 48, 54, and 55. On the other hand, pyrolysis of 

deuterated 50 under similar conditions led to the same fragmentation products 52 

and 53 but totally different [4+4] dimers 51, 56, and 57. The structures were assigned 

on the basis of GC/MS and ^H NMR analyses and these assignments are simply 

illustrated by comparison of the ^H NMR spectra (Figure 4a and 4b) of the pyrolysates. 

The common proton signals at S 6.46 and 6.27 ppm were assigned to the furan ring 

proton at the 4-posItion of 52 and 53, respectively. The down field shift of the signal at 

8 6.46 ppm Is due to the effect of the 3-vinyl substituent. The assignments were further 

confirmed by comparison of the chemical shifts with those of the signals of 45 and 46. 

The doublets at 5 6.24, 6.07, and 6.03 ppm in Figure 4a and the doublets at 5 6.22, 

6.18, and 6.14 ppm in Figure 4b indicate the existence of two different sets of [4+4] 

dimers, which are also suggested by their GC/MS fragmentation patterns. By 

chemical shifts and GC retention times, [4+4] dimer 48 was identified as one of the 

D 

52 53 
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(a) 

w 

6.0 PPM 

(b) 

T—I—I—r T—I—I—r T—I—I—r T—I—I—r T—r 

6.5 

Figure 4. 

6.!i 6.3 6.2 6.1 6..0 PPM 

(a) NMR spectrum (300 MHz, CDCI3) of the pyrolysate of [4+21 dlmer 
49 (A: 2-ethyl-3-ethylenyl-furan (52), B: 3-ethyl-2-ethyleneyl-furan 
(S3). D:[4+41 dlmers 48, 54 and 55): (b) NMR spectrum (300 MHz, 
CDCI3) of the pyrolysate of [4+21 dlmer 50 (A: 2-ethyl-3-ethylenyl-furan 
(52), B: 3-ethyl-2-ethyleneyl-furan (53), D: [4+4] dlmers 51, 56 and 57). 
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components In the pyrolysate of 49 while [4+4] dlmer 51 was assigned as one of the 

products In the pyrolysate of 50. 

To explain these pyrolysis results, we suggest that the stereochemistrle of the 

ethylene bridges of 49 and 50 are different. If both 49 and 50 have the same relative 

configuration on the ethylene bridge, we should have obtained the same [4+4] dlmers 

in the pyrolyses. However, If these configurations are different, generation of the 

stereolsomerlc diradlcal intermediates 58 and 59 are expected. Since the relative 

58 48, 54 and 55 49 

59 51, 56 and 57 

configuration of the ethylene bridge Is maintained during the diradlcal formation 

process, there is no doubt that cycllzation of the diradlcals 58 and 59 afford two 

dilTerent sets of dlastereomeric [4+4] dlmers. Since the relative configuration of 49 was 

identified to be anti on the ethylene bridge, we assigned the syn-configuratlon to 50, 

Also, because we identified 48 and 54 as pyrolysis products of 49, and 51 as one of 

the pyrolysis products of 50, their relative configurations of the 3-ethylene bridges are 

determined. 
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DISCUSSION 

Recent kinetic and product studies are consistent with the proposal that 

2,3-dimethylene-2,3-dihydrofuran (1) dimerizes by a two-step diradical mechanism 

which Involves rate-determinating formation of a diradical intermediate followed by 

rapid cyclization of the diradical.^ On the basis of deuterium kinetic isotope studies. 

Chou and Trahanovsky concluded that only the 3-methylene carbon is involved in the 

rate-determinating step while the 2-methylene carbon is involved only in the diradical 

ring-closure process and attributed these results to the relative stability of the furfuryl 

diradicals. This arguement is consistent with the fact that the 2-furfuryl radical is 

more stable than the 3-furfuryl radical.^^ In the present study introduction of methyl 

substituents on the reactive diene unit of furan-based o-QDM's indeed affects both the 

diradical formation step and the diradical cyclization step. We now discuss these 

effects. 

On the basis of the proposed diradical mechanism, we expected to see 

retardation of furan-based o-QDM dimerizations by Introduction of a bulky 

substituent on the 3-methylene position. In fact, the trend of the relative reactivity 

of 2,3-dimethylene-2,3-dihydrofuran (1), 3-ethylidene-2-methylene-2,3-dihydrofuran 

(12), and 2-methylene-3-tert-butyl-methylene-2,3-dihydrofuran (29) towards 

dimerization is strongly consistent with this expectation. The parent o-QDM 1 is so 

reactive that it dimerizes at -20 °C, the 3-methyl derivative (12) dimerizes slowly within 

several hours at room temperature, and the 3-tert-butyl derivative (29) is unreactive at 

room temperature and no dimer was isolated even after all of the monomer 

disappeared at higher temperature.^^ 

The shielding of the reactive 3-methylene position of o-QDM 12 by the methyl 

substituent apparently retards the head-to-head dimerization process enough to allow 
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the head-to-tall dlmerlzatlon to become competitive. In the dlmerlzatlon of 12, 

significant amounts of head-to-tall dlmers 32-35 were Isolated along with the head-

to-head [4+4] dlmers 30 and 31. These results are attributed to the competitive 

formation of the head-to-tall diradlcal 61 which further cycllzes to head-to-tail dlmers 

32-35. The head-to-head [4+4] dlmers 30 and 31 are the dlmers expected from the 

head-to-head diradlcal 60, but the possibility of the Involvement of tall-to-tall diradlcal 

62 cannot be eliminated. However, the assumption that the head-to-head diradlcal 60 

Is involved Is consistent with the fact that the head-to-head dlmerlzatlon of the 

dimethyl o-QDM 14 still occurs even though 14 has a methyl group on the 

3-methylene position. 

,CH--HC. 

CH3 CH3 

Dlmers 
30 and 31 

60 

ÇH3 

•CHG HC 

CHs 

CH3 

Dlmers 
32-35 

CH3 CHa 

62 

Introduction of a methyl substituent on the 2-methylene carbon. Instead of 

the 3-methylene position, does not retard the head-to-head dlmerlzatlon. In fact, 

o-QDM 13 dlmerizes exclusively In the head-to-head fashion to give rise to (4+4) and 
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(4+2) dimers 38-43. Importantly, identification of the disproportionation product 44 

in this case strongly supports the diradical mechanlsni.22 

. tC -
CH3 

13 

rr CH, - •HaC, 

CH 

CHo CH3 
\ 
CH3 

Head-to-head 
[4+4] and 14+2] dimers 

38-43 

In contrast to the dimerization of 12, o-QDM 14 dimerizes mainly in a 

head-to-head fashion. Introduction of methyl substituents at the 2-methylene and 

3-methylene positions indeed enhances steric retardation of both head-to-head and 

head-to-tail dimerization processes. As the discrepancy of the steric hindrance 

disappears, electronic influences predominate and, like the parent o-QDM 1, o-QDM 

14 dimerizes again in the head-to-head fashion. 

a 
CH3 

.CH 

14 
CH3 

CH3Y CH3 
I  ̂ I 

• CH-.-HC, 

CH 
% 
CH3 

HC 

CH3 

Head-to-head 
[4+4] and [4+2] 

dimers 
48-51 

5 ÇH3 • 

cc:r:» 
ÇH3 

,CH --HC. 

CH HC 
% % 
CH3 CH3 
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Formation of both head-to-head [4+41 dimers 30 and 31 in the dimerization of 

12 indicates the existence of two distinct diradical intermediates 63 and 64.23 

However, both diradical, cisoid 63 and transoid 64, cyclize in a [4+41 fashion. These 

results indicate that the second step of the head-to-head dimerization is uninfluenced 

by the relative orientation of the monomers in transition states 65 and 66 and that 

both the cisoid and transoid diradicals derived from these transition state cyclize in 

the same fashion. 

On the other hand, a methyl group on at the 2-methylene position changes the 

preference of cyclization of the diradical. Dimerization of 13 provides the head-to-head 

[4+21 and head-to-head [4+41 dimers in a 2.3 to 1 ratio. This observation is consistent 

with the result of o-QDM Z 4 dimerization.^^ o-QDM Z-4 was generated by FVP and is 

reported to dimerize mainly in a head-to-head [4+21 fashion. 

Head-to-head 
[4+41 dimers 

30 and 31 
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fi:-
I 

C(CH3)3 
Z-4 

Pyrolysls of the [4+2] dlmers of o-QDM 13 led to a series of thermodynamically 

stable products. On the basis of the FVP experiment, we concluded that the [4+4] 

dlmers are thermodynamically more stable than the [4+2] dimers which means that 

the cyclization of diradical 67 indeed is a kinetically controlled process. Increasing 

sterlc hindrance at the 2-meUiylene position by introduction of a substituent appears 

to retard the [4+4] cyclization which enhances the competitiveness of the [4+2] 

cyclization. 

CH3 

[4+4] 

cyclization 

[4+2] 

cyclization 

CH3 CH3 
38, 39 

CHo 

H3C 
40-43 

The combined features of the dimerlzatlon of o-QDM 12 and of o-QDM 13 can 

be seen In the dimerlzatlon of o-QDM 14. Similar to o-QDM 12, o-QDM 14 dimerlzed 

to two series of head-to-head dlmers which possess different relative configurations of 

their 3-ethylene bridges. On the basis of our analyses, dlmers 48, 49, and 54 are 
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originally derived from cisoid diradlcal 68 and dimers 50 and 51 are derived from 

transold diradlcal 69. These results again implicate the existence of the cisoid and 

transold monomer encounters in the diradlcal formation step. On the other hand, the 

methyl substituents on the 2-furfuryl radical sites of 68 and 69 again make a 

HGC CHG 

I H,C 

HgC 

HGC CHG 

O^ H H Y,O 

CH HC 
i \ 

H3C CH3 J 

CH 
J» 

H3C 

H3C CH3 
48, 54 

49 : (48 +54) 
CH3 =5:1 

CH; 
CH CH. 

CH. CH. 

CH. 

CH 
50 69 

CH. 

CH CH3 CH3 

51 
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distinct change In the mode of cycllzatlon. Unlike the head-to-head diradical 

Intermediate of the parent o-QDM 1 and those of o-QDM 12, but similar to that of 

o-QDM 13, dlradlcals 68 and 69 prefer to cycllze In a [4+2] fashion. More Interestingly, 

both 68 and 69 cycllzed to give rise to a mixture of [4+2] and [4+4] dlmers In a similar 

ratio of 5 to 1. This observation suggests that the preference for the cycllzatlon mode of 

the diradical Intermediates in the dlmerlzatlon is insensitive to the initial conformation 

of the radicals or the relative orientation of the monomers in the transition states of 

the diradical formation step. 

To summarize our studies, a comparison of the dlmerlzatlon results is shown 

in Table 4. The cisoid and transold monomer encounters in the diradical formation 

step were successfully labelled by introducing a methyl group at the 3-methylene 

position of the furan-based o-ODM's. Once the diradical intermediate is formed, the 

methyl substltuents on the 3-ethylene bridge do not show any significant effect on the 

mode of cycllzatlon of the diradical. On the other hand, the mode of cycllzatlon Is 

strongly affected by a methyl substituent on the 2-methylene position. This result 

Indicates that sterlc retardation of bond formation between two 2-furfuryl radical sites 

of the diradical Intermediate may slow down the [4+4] cycllzatlon and enhance the 

competitiveness of the [4+2] cycllzatlon. 

In general, cycllzatlon of a reactive species involves an internal bond rotation 

step as well as the intramolecular bond formation step between the active sites on the 

chain. A general Idea about the cycllzatlon reaction Is depicted In Scheme 4. 

Conformational motion of the carbon chain brings the intermediate to reactive 

conformation 70 or 71 which can further cycllze to form cycllzatlon products 72 and 

73, respectively. In principle, any factor that can affect the Internal rotation or the 

Intramolecular bond formation of the Intermediate can be crucial In the 
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Table 4. Cycllzatlon regioselectivity of the diradlcal intermediates In the 
dlmerizatlon of furan-based o-qulnodimethanes. 

Entry o-QDM Head-to-head 
diradlcal 

intermediate 

Cycllzatlon 
regioselectivity 

[4+4] : [4+2] 

CHg 

CHz 
la 

>20 

CH3 
\ 

y C —  H  

12 

H3C CH, 

>20 

o % 

CH3 
13 

<0.5 

CH, 

C — H 

% 
CH, 

14 

H,C CHs 

<0.25 

See reference 2 

regioselectivity of the cycllzatIon^®'24. However, in view of this studing of the results of 

the furan-based o-QDM dimerizatons, we believed that the bond formation step 

between the actives sites on two furan moieties of the diradlcal intermediate is the key 

step in controlling the regioselectivity in the diradlcal cycllzatlon process. The first 
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Scheme 4 

* 

bond formation 

intramolecular 

* 

* 

70 72 

Internal rotation 

ik * * * 
Intramolecular 

bond formation 

71 73 

* reactive site 

insight we obtained from our experiments is the successfully labelling of the cisoid and 

transold transition states, which lead to cisoid and transold dlradicals, in the 

dimerlzation. On the basis of these results, we reasonably extrapolate this conclusion 

to the dimerlzation of the parent 2,3-methylene-2,3-dlhydrofuran (2) and suggest the 

co-existence of cisoid and transold dlradicals 7 and 8 in the dimerlzation. Since both 

cisoid and transold dlradicals lead to the same kind of cyclization products in all the 

cases we studied, we believed that the initial conformation of the diradlcal Is 

unimportant In the regloselectivity of the diradlcal cyclization and diradlcal 

conformations 7 and 8 will lead to the same [4+4] dimer. Moreover, although the 

methyl substituents on the 3-ethylene bridge restrict the bond rotation of the diradlcal 

intermediates, they do not strongly interfere with the regloselectivity of the diradlcal 

cyclization (Table 4, entries 2 and 4). This observation is consistent with the results 

reported by Huang. Huang discovered that a (erf-butyl substituent at the 4-posltlon 
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on the furan ring does not alter the mode of cycllzatlon of o-QDM 74 which gives rise 

to the major [4+4] dlmer 7S, eventhough retardation of the ethylene bridge rotation Is 

expected. These results again indicated that the regloselectivity of the diradical 

CH. 

2 

CH; 

74 75 

cycllzatlon, the product determinating step. Is not controlled by the motion of the 

bridge. However, increasing sterlc shielding around the furfuryl radical site can alter 

the regloselectivity of the cycllzatlon to favor the [4+2] cycllzatlon. 
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EXPERIMENTAL SECTION 

The pyrolysis apparatus has been previously described.^® NMR spectra were 

obtained on a Nicolet NT-300 spectrometer. Chemical shifts are reported In parts per 

million (8) from tetramethylsllane (TMS). Gas chromatographic analyses were 

performed on a Hewlett-Packard model 5840A gas chromatograph (GC) equipped with 

a 30 meter, DB-1 capillary column from J&W scientific and a flame ionization detector. 

Combined gas chromatographlc/mass spectra (GC/MS) analyses were performed on a 

Firmlgan 4000 GC/MS with Incos data system. High resolution mass spectra were 

measured with an Associated Electronics Industries MS-902 instrument or MS 50 

mass spectrometer. Infrared spectra (IR) were recorded on a Beckman Acculab II 

spectrometer. Tetrahydrofuran (THF) was distilled from sodium/benzophenone 

immediately before use. Acetonitrile was deaerated immediately before use. 

Diisopropylamlne was distilled from calcium hydride (CaH2). Commercial methyl 

lithium (in ether), n-butyl lithium (in hexane), chlorotrimethylsilane, tetrabutyl-

ammonium fluoride (TBAF) and methyl 2-I(trimethylsllyl)methylI-3-furancarboxylate 

were purchased from Aldrich Chemical Company. 

Methyl 2-I(trimethylsiIyl)methyl]-3-furancarbozylate (19). To a stirred 

solution of diisopropylamlne (29.6 g. 293 mmol) In THF (200 mL) at -78°C was added 

n-butylllthlum (115 mL, 288 mmol ) under nitrogen. The mixture was stirred for 1 h 

and a solution of chlorotrimethylsilane (17.0 g, 157 mmol) and methyl 2-methyl-3-fu-

rancarboxylate (18) (19.0 g, 136 mmol) in THF (200 mL) was added dropwise over 90 

min. After addition, the solution was further stirred for 1 h and the reaction was 

quenched at low temperature by addition of water. The solution was then warmed to 

room temperature and extracted with 3 x 150mL of CH2CI2. The combined organic 

phases was treated with 100 mL of brine and dried over anhydrous NagSO^. Removal 
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of the solvent left an oil which was distilled under reduced pressure to give essentially 

pure ester 19 (22.4 g. 78%): bp 105-1IQOC (20 mmHg); IR (neat. NaCl) 2850-2980 (C-H). 

1720 (C=0). 1250 (SI-CH3) cm-1; NMR (CDCI3) 5 0.03 (s. 9H). 2.56 (s, 2H ), 3.78 (s. 

3H ). 6.58 (d.lH. J=1.9 Hz). 7.14 (d. IH. J=1.9 Hz); mass spectrum m/e (relative 

Intensity) 212 (10). 197 (20). 181 (7). 108 (84). 89 (160). 80 (22). 73 (100), 59 (20). 45 (31); 

exact mass, m/e 212.08727. calculated for C10H16O3SI 212.08688. 

3-(Hydroxymethyl)-2-[(trlmethylsilyl)methyl]furan (20). To a. stirred 

LIAIH4 suspension (2.0 g. 53 mmol) in anhydrous diethyl ether (30 mL) at 0°C was 

added an etheral solution of carboxyllc ester 19 (6.8 g, 32 mmol in 30 mL of 

anhydrous ether) dropwise over 20 min. After addition of the ester, the mixture was 

further stirred for 3 h and then worked up as usual^^ to provide the crude alcohol 20. 

Distillation of the crude oil under vacuum gave essentially pure alcohol 20 (5.4 g. 29 

mmol. 91%) : bp=103-105OC (17 mmHg); IR (neat. NaCl) 3280 (O-H). 2900-2980 (C-H). 

1260 (SI-CH3). 1050 (C-OH) cm-1; ^H NMR ( CDCI3) 5 0.03 (s. 9H). 1.22 (t. IH. J=4.6 Hz). 

2.06 (s. 3H), 4.41 (d. 2H. J=4.6 Hz). 6.34 (d. IH. J=1.9 Hz). 7.20 (d. IH. J=1.9 Hz); mass 

spectrum m/e (relative intensity) 184 (7). 94 (100). 75 (32). 73 (66). 45 (24); exact mass, 

m/e 184.09234, calcd for CgHieOgSI 184.09196. 

3-(l-Hydroxyethyl)-2-I(trimethylsllyl)methyl]furan (22). To a solution of 

pyridine (12.4 g. 156 mmol) In dichloromethane (200 mL). protected by a drying tube, 

was added chromium trioxide (7.8 g, 78 mmol). The solution was stirred for 15 min at 

room temperature and then a solution of alcohol 20 (2.4 g, 13 mmol) in 

dichloromethane (10 mL) was added In one portion. A tarry, black deposit separated 

immediately. After stirring an additional 15 min at room temperature, the solution 

was decanted from the residue and worked up In the same manner as reported by 

Ratcliffe^® to afford the crude aldehyde 21. Distillation of the crude oil under reduced 
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pressure provided essentially pure aldehyde 21 (1.6 g, 62%) : bp 68-70 °C (0.5 mmHg); 

iH NMR (CDCI3) 5 0.06 (s. 9H). 2.45 (s. 2H), 6.63 (d. IH. J=2.1 Hz). 7.20 (d. IH, J=2.1 

Hz), 9.81 (s, IH): mass spectrum m/e (relative intensity) 182 (13), 167 (12), 73 (100), 45 

(17). 

To a stirred solution of aldehyde 21 (1.6 g, 8.8 mmol) in THF (80 mL) was added 

dropwise an etheral solution of methyl lithium (6.5 mL, 1.4 M, 9.1 mmol) at -78 °C. 

After addition, the solution was further stirred for 30 min and was then quenched with 

water at low temperature. The mixture was extracted with 3 x 100 mL of diethyl ether. 

The combined organic phases was washed with 100 mL of brine and dried over 

anhydrous MgS04. Removal of the solvent left the crude oil which was further distilled 

under reduced pressure to give essentially pure alcohol 22 (1.4 g, 80%): bp 65-67 °C 

(0.35 mmHg): DR (neat, NaCl) 3360 (broad, O-H), 2900-2980 (C-H), 1250 (Si-CHa) cm'l; 

1h NMR (CDCI3) 80.04 (s, 9H), 1.43 (d, 3H, J=6.5 Hz), 1.53 (bs, IH), 2.06 (s, 2H), 4.74 (q, 

IH, J=6.5 Hz), 6.35 (d, IH, J=1.7 Hz), 7.18 (d, IH, J=1.7 Hz): mass spectrum m/e 

(relative intensity) 198 (20), 108 (90), 75 (46), 73 (100), 45 (19): exact mass, m/e 

198.10794, calcdforCioHi802Si 198.10761. 

3-(l-Acetoxyethyl)-2-I(trimethylsilyl)methylIfuran (15). To a stirred 

solution of acetyl chloride (1.2 g, 15 mmol) in benzene (10 mL), protected by a drying 

tube, at room temperature was added a solution of pyridine (1.2 g. 15 mmol) in 

benzene (5 mL). After addition, a white precipitate formed immediately. The solution 

was stirred for 10 min and a solution of alcohol 22 (1.4 g, 7 mmol) In benzene (5 mL) 

was added. The mixture was stirred for additional 2 h, and then quenched with water 

and extracted with 2 x 50 mL of dlchloromethane. The combined organic phases was 

washed with 100 mL of brine, dried over anhydrous Na2S04 and concentrated to 

provide a colorless crude oil. Distillation of the crude oil under reduced pressure 
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afforded essentially pure ester 15 (1.5 g, 88%): bp 81-83 °C (1.4mmHg); IR (neat, 

NaCl) 2900-2990 (C-H). 1740 (C=0). 1250 (SI-CH3) cm'l; NMR (CDCI3) S 0.02 (s. 9H), 

1.45 (d. 3H, J=6.5 Hz), 2.00 (s, 3H), 2.02-2.11 ( AB q. 2H. J=14.8 Hz), 5.74 (q, IH, J=6.5 

Hz), 6.35 (d, IH, J=1.9 Hz), 7.18 (d, IH, J=1.9 Hz); GC/MS (70eV) m/e (relative Intensity) 

240 (6), 181 (11), 117 (17), 108 (100), 73 (83), 43 (56); exact mass m/e 180.09720, 

calculated for CioHieOSi (M-CH3COOH) 180.09705. 

Methyl 2-[l(triinethylsllyl)ethyl]furan-3-carbo2cylate (23). To a solution 

of dllsopropylamine (4.8 g, 47.5 mmol) In THF (40 mL) at -78°C under nitrogen was 

added 19 mL of 2.5 M n-BuLI solution In hexanes (47.1 mmol). After 2h at -78°C, a 

solution of trlmethylsllylated methyl furancarboxylate 19 In THF (5 mL) was added. 

The reaction mixture was further stirred at -78°C for 8 h and a solution of Mel (10.0 g, 

71 mmol) in THF (5 mL) was then added. After being further stirred for 30 min, the 

reaction mixture was quenched by addition of water at low temperature. The quenched 

solution was warmed to room temperature and extracted with diethyl ether twice. The 

combined extracts was washed with brine, dried over anhydrous MgS04, and 

concentrated under reduced pressure and fractional distilled under vacuum to provide 

a mixture of 23 and overmethylated product 24 In a 10:1 ratio. The mixture was 

further purified on a silica gel flash chromatography with a mixture of benzene and 

hexanes (1:3) as the eluent. The purity of 23 was checked by GC/MS analysis: bp 72-

730c (0.9 mmHg); IR (neat, NaCl) 2900-3000 (C-H), 1720 (s. C=0) 1250 (SI-CH3) cm'l; 

1h NMR (CDCI3) S -0.01 (s. 9H). 1.32 (d, J=7.3 Hz, 3H). 3.25 (q. J=7.3 Hz, IH), 3.78 (s, 

3H), 6.58 (s, IH), 7.18 (s, IH); mass spectrum, m/e (relative intensity) 226 (M+, 17), 

211 (15), 197 (5), 195 (5). 167 (3). 151 (8), 123 (9), 122 (100), 121 (30), 94 (30). 73 (60); 

exact mass, m/e 226.10266, calcd for CnHisOsSi 226.10253. 
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3-(Hydroxymethyl)-2-Il-(trimethylsilyl)ethyllfuran (25). To a suspension 

of LIAIH4 (Ig, 26 mmol) In diethyl ether (50 mL) at 0°C was added dropwise a solution 

of ester 23 (1.8g, 8.0 mmoL). The reaction mixture was stirred overnight at ambient 

temperature and worked up as usual^^ to provide the crude oil which was subjected to 

vacuum distillation to provide essentially pure alcohol 25 (l.lg, 70%): bp 74-75°C (1 

mmHg): IR (neat, NaCl) 3700-3100 (broad, O-H), 2880-2960 (C-H), 1250 (SI-CH3) cm'l; 

iH NMR (CDCI3) 8 -0.14 (s, 9H), 1.30 (d. J=7.5 Hz. 3H). 1.54 (broad s. IH). 2.25 (q. J=7.5 

Hz, IH). 4.44-4.38 (AB q. J=12.1 Hz, 2H). 6.33 (d. J=1.7 Hz, IH). 7.22 (d. J=1.7 Hz. IH); 

mass spectrum, m/e (relative intensity) 198 (M+. 5) 183 (4), 167 (5), 124(5), 109 (13), 108 

(100), 107 (18), 79 (22). 75 (50). 73 (89), 45 (33), 43 (20); exact mass, m/e 198.10759. 

calcd for C10H18O2SI198.10761. 

Deuterated 25 was prepared in the same manner except that LIAID4 was used 

as the reducing agent: IR (neat, NaCl) 3700-3000 (broad, C-H) 2200, 2120 (C-D), 1250 

(SI-CH3) cm-l; iH NMR (CDCI3) S -0.07 (s, 9H), 1.19 (s, IH). 1.30 (d. J=7.5 Hz. 3H). 2.25 

(q. J=7.5 Hz, IH), 6.34 (d, J=1.9 Hz, IH), 7.22 (d, J=1.9 Hz. IH); mass spectrum, m/e 

(relative Intensity) 200 (M+, 4). 185 (3), 167 (6), 110 (100). 81 (11). 75 (33). 73 (73); exact 

mass, m/e 200.12034, calcd. for C10H16D2O2SI 200.12017. 

3-(Acetozymethyl)-2-[l-(trimethylsilyl)ethyl]furan (16). Ester 16 was 

prepared following the procedure described previously In the preparation of 15 from a 

solution of acetyl chloride (0.9 g, 11.5 mmol) In benzene (20 mL) and a solution of 

pyridine (0.9 g, 11.1 mmol) In benzene (5 mL), and a solution of alcohol 25 (l.lg, 5.6 

mmol) to afford essentially pure 16 (1.1 g. 82 %): bp 82-83 °C (0.75 mmHg); IR (neat. 

NaCl) 2800-2960 (C-H). 1750 (C=0) 1250. 1230 (SI-CH3) cm'l; ^H NMR (CDCI3) 6-0.02 

(s, 9H), 1.29 (d, J=7.4 Hz. 3H). 2.04 (s. 3H). 2.28 (q, J=7.4 Hz, IH). 4.80-4.93 (AB q, 

J=12.3 Hz, 2H), 6.31 (d, J=1.9 Hz, IH), 7.22 (d, J=1.9 Hz, IH); mass spectrum, m/e 
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(relative Intensity) 240 (M+. 9). 225 (1). 198 (8), 183 (14), 117(23), 109 (10), 108 (100), 107 

(20). 79 (20). 75 (32), 73 (81), 45 (25), 43 (56): exact mass, m/e 240.11813, calcd for 

C12H20O3SI 240.11818. 

2-Il-(Trimethylsilyl)ethyl]-3-furaldehyde (26). To a vigorously stirred 

suspension of CrOg (0.9 g, 9 mmol) in P2O5 dried CH2CI2 (50 mL) cooled In an Ice-

bath, was added 5 g of pyridine slowly. The reaction mixture turned a deep red. After 

15 mln a solution of alcohol 25 (300 mg, 1.5 mmol) In CH2CI2 (10 mL) was added in 

one portion. A tarry black deposit precipitated Immediately. The deep brownish 

solution was further stirred for 15 mln, decanted and worked up as reported by 

Ratcliffe^® to give a crude oil. Distillation of the crude oil under vacuum provided 

essentially pure aldehyde 26: IR (CCI4, NaCl) 2800-2970 (C-H), 2740 (0=C-H), 1670 

(s, C=0) 1250 (SI-CH3) cm-1; NMR (CDCI3) 60.01 (s, 9H), 1,38 (d, J=7.3 Hz, 3H), 2.85 

(q, J=7.3 Hz. IH). 6.64 (d. J=2.0 Hz. IH), 7.23 (d, J=2.0 Hz. IH). 9.85 (s. IH): mass 

spectrum, m/e (relative Intensity) 196 (m+. 88). 181 (9). 167 (11). 151 (13), 147 (21), 138 

(5), 124 (12). 107 (11). 95 (5), 75 (45), 73 (100): exact mass, m/e 196.09168. calcd for 

C10H16O2SI 196.09196. 

Deuterated 26 was prepared from deuterated 25 in the same manner. The 

product was purified on a silica gel column with a mixture of hexanes and ethyl 

acetate (8:1) as the eluent: IR (neat, NaCl) 2900-2980 (C-H), 2100 (C-D), 1670 (C=0) 

1250 (SI-CH3) cm-1; ^H NMR (CDCI3) S 0.02 (s. 9H), 1.40 (d, J=7.3 Hz. 3H). 2.86 (q, J= 

7.3 Hz. IH). 6.66 (d. J=2.0 Hz. IH). 7.24 (d. J=2.0 Hz, IH): mass spectrum, m/e (relative 

intensity) 197 (M+. 98). 182 (10). 168 (8). 147 (22). 125 (11). 108 (10). 75 (51). 73 (100); 

exact mass, m/e 197.09859. calcd for C10H15DO2SI 197.09824. 

3-I-(Hydroxyethyl)]-2-Il-(trimethylsllyl)ethylIfuran (27). To a stirred 

solution of aldehyde 26 (130 mg. 0.67 mmol) In THF (20 mL) was added dropwlse an 
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ethereal solution: of methyl lithium (0.6 mL, 0.82 mmol) at -78°C. After addition of the 

reagent, the solution was further stirred for 30 min and was quenched with water at 

low temperature and worked up as mentioned previously in the preparation of 22 to 

give a diastereomeric mixture of alcohols 27 (135 mg, 95 %): IR of the diastereomeric 

mixture (neat). 3700-3100 (broad, O-H). 2890-2900 (C-H). 1260 (Si-CHs) cm"!; NMR 

of the diastereomeric mixture (CDCI3) S -0.01 and 0.02, (two s. 9H). 1.32-1.25 (two d, 

J=7.7 Hz. 3H). 1.43 (d. J=6.4 Hz, 3H). 2.23-2.28 (m. IH). 4.75-4.82 (m. IH). 6.36 (d. J=1.9 

Hz. IH). 7.21 (d. J=1.9 Hz. IH); GC/MS. temperature program, initial temperature 

(time), rate, final temperature (time). 120 °C (5 min), 10 °C/min. 200 °C (5 min). 

Component 1: GC retention time (relative intensity) 9.68 min (65 %), mass spectrum, 

m/e (relative intensity) 212 (M+. 2). 197 (3). 194 (3). 167 (5). 123 (10). 122 (52), 121 (5), 

108 (3), 107 (41). 105 (3). 75 (35). 73 (100). 45 (29). 43 (33). Component 2: mass 

spectrum, m/e (relative intensity) 212 (M+. 2). 197 (2), 194 (3), 167 (6). 123 (9), 122 (50). 

121 (5), 108 (3). 107 (41), 105 (3). 75 (35). 73 (100). 45 (29). 43 (33); exact mass of the 

dlasteromerlc mixture m/e 212.12297. calcd for CnHgoOgSi 212.12326. 

Deuterated 27 was prepared from deuterated 26 in the the same manner: 

bp -100 °C (5.2 mmHg). IR of the diastereomeric mixture (neat. NaCl) 3700-3100 

(broad, O-H). 2890-2990 (C-H). 2160 (C-D), 1260 (SI-CH3) cm'l; ^H NMR (CDCI3) 8 

0.02-0.12 ( two s. 9H). 1.26-1.32 (two d. J=7.5 Hz. 3H), 1.43 (s, 3H). 2.24 (m. IH), 6.36 (d, 

J=1.9 Hz, IH), 7.21 (d. 1.9 Hz. IH); GC/MS, temperature program, initial temperature 

(time), rate, final temperature (time). 120 °C (5 min). 10 °C/mln. 200 °C (5 min). 

Component 1: GC retention time (relative intensity) 9.30 min (62 %). mass spectrum, 

m/e (relative Intensity). 213 (2). 198 (3). 167 (4). 123 (100). 108 (54), 75 (31). 73 (82). 45 

(31). 43 (42). Component 2: GC retention time (relative intensity) 9.86 min (33 %), mass 
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spectrum m/e (relative intensity) 213 (2), 198 (3), 167 (5). 123 (100), 108 (55), 75 (33), 73 

(88), 45 (32), 43 (41); exact mass m/e 213.12925, calcd for C11H19DO2SI 213.12954. 

.3-[l-(Aceto2:yethyl)]-2-[l-(trlmethylsilyl)ethyl]furan (17). Aceto^ furan 

17 was prepared following the procedure described previously in the preparation of 15 

from a solution of acetyl chloride (400 mg, 5.12 mmol) and pyridine (400 mg 5.06 

mmol) in benzene (10 mL), and a solution of alcohol 27 (130 mg, 0.61 mmol) in 

benzene (5 mL) to provide a diastereomeric mixture of esters 17 (105 mg, 68 %). IR of 

the mixture (NaCl, neat) 2860-2980 (O-H), 1740 (C=0), 1250 (SI-CH3) cm'l; NMR of 

the major component (66 %) (CDCI3) 8 -0.04 (s, 9H), 1.24 (d, J=7.5 Hz, 3H), 1.45 (d, 

J=6.5 Hz. 3H). 1.99 (s, 3H), 2.28 (q, J=7.5 Hz. IH). 5.83 (q, J=6.6 Hz, IH), 6.34 (d, J=1.9 

Hz, IH). 7.21 (d. J=1.9 Hz. IH). GC/MS of the major component, temperature 

program, initial temperature (time), rate, final temperature (time). 120 °C (5 mln), 10 

°C/mIn, 200 °C (10 mln), retention time 11.21 mln; mass spectrum, m/e (relative 

Intensity) 254 (M+, 5), 212 (6), 197 (8), 195 (9), 194 (6), 122 (100), 177 (24), 107 (59), 75 

(30), 73 (95), 45 (26), 43 (43). ^H NMR spectrum of the minor component (32 %) 

(CDCI3) S. -0.04 (s, 9H), 1.26 (d, J=7.4 Hz, 3H). 1.44 (d. J=6.6 Hz. IH). 1.99 (s. 3H). 2.33 

(q. J=7.4 Hz, IH), 5.76 (q, J=6.6 Hz, IH). 6.33 (d, J=1.9 Hz, IH), 7.21 (d. J=1.9 Hz. IH); 

GC/MS of the minor component, temperature program, initial temperature (time), 

rate, final temperature (time), 120 °C (5 mln), 10 °C/mIn, 200 °C (10 mln), GC 

retention time 11.35 mln; mass spectrum, m/e (relative Intensity) 254 (M+, 5) 212 (6), 

197 (8), 195 (9), 194 (6). 122 (100), 117 (24). 107 (59), 75 (30), 73 (95), 45 (26). 43 (43). 

Exact mass of the diastereomeric mixture, m/e 254.13394. calcd for C13H22O3SI 

254.13383. 

The diastereomeric deuterated derivatives of 17 were prepared from deuterated 

alcohol 27 in the same manner: IR (neat, NaCl) 2860-2970 (C-H), 1740 (C=0), 1250 
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(SI-CHs) ; The NMR spectra and GC/MS of both diastereomers were obtained from 

their mixture: NMR of the major component (64 %) (CDCI3) Ô -0.16 (s, 9H), 1.29 

(d. J=7.4Hz. 3H). 1.46 (s. 3H). 2.01 (s. 3H). 2.30 (q. J=7.4 Hz. IH). 6.35 (d. J=1.9 Hz. IH). 

7.21 (d. J=1.9 Hz. IH): GC/MS of the major component, temperature program, initial 

temperature (time), rate, final temperature (time), 120 °C (5 min), 10 °C/mln, 200 °C 

(10 min), retention time 11.23 min; mass spectrum, m/e (relative intensity) 255 (M+, 4), 

213 (4), 198 (8), 196 (8), 123 (100), 108 (47), 75 (29), 73 (85), 45 (30), 43 (56). ^H NMR 

spectrum of the minor component (36 %), (CDCI3) 6 -0.16 (s, 9H), 1.26 (d, J=7.4Hz, 3H), 

1.46 (s. 3H), 2.01 (s, 3H), 2.38 (q, J=7.4 Hz, IH). 6.34 (d, J=1.9 Hz, IH), 7.21 (d, J=1.9 Hz, 

IH). GC/MS of the minor component, temperature program, initial temperature 

(time), rate, final temperature (time), 120 °C (5 min), 10 °C/min, 200 °C (10 min), 

retention time 11.37 min: mass spectrum 255 (M+, 6), 213 (5), 198 (9), 196 (9), 123 (91), 

108 (52), 75 (27), 73 (100), 40 (30), 43 (56). Exact mass of the diastereomers, m/e 

255.13974, calcd for Ci3H2iD03Si 255.14011. 

Dlels-Alder trapping reaction of 12 with methyl acrylate. To a solution 

of 3- ( 1 -acetoxyethyl) -2 -[(trimethylsilyl)methyl]furan 12 (100 mg, 0.42 mmol) and 

methyl acrylate (360 mg, 4.2 mmol) in acetonltrile (8.0 mL) under nitrogen at reflux 

temperature was added dropwlse a solution of TBAF (180 mg, 5.7 mmol) in acetonltrile 

(5.0 mL). After addition, the solution was stirred for additional 30 min, and then was 

quenched with water. The mixture was extracted with 2 x 30 mL of diethyl ether. The 

combined organic phase was washed with 2 x 50 mL of distilled water, 50 mL of brine 

and dried over anhydrous MgS04. Removal of the solvent provided a slightly yellowish 

crude oil (80 mg). By use of the GC/MS and ^H NMR analyses, four major components 

in the crude oil were identified as reglo- and stereo-isomers of Diels-Alder adducts of 

28 with methyl acrylate. GC/MS, initial temperature (time), rate, final temperature 
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(time), 120 °C (5 min), 5 °C/mIn, 250 °C (5min). Diels-Alder adduct 1: retention 

time (20.33 min): mass spectrum, m/e (relative interisity) 194 (40), 179 (5), 163 (10), 135 

(100), 134 (45), 119 (41), 108 (35), 91 (34), 79 (20). Diels-Alder adduct 2: retention 

time (20.42), mass spectrum, m/e (relative intensity) 194 (54), 179 (16), 163 (16), 135 

(68), 134 (100), 119 (86), 108 (53), 91 (56), 79 (38). Diels-Alder adduct 3: retention 

time (20.87), mass spectrum, m/e (relative intensity) 194 (55), 179 (4). 163 (14), 135 

(55), 134 (95), 119 (83), 108 (100), 91 (48), 79 (33). Diels-Alder adduct 4: retention 

time (20.95), mass spectrum, m/e (relative Intensity) 194 (42), 179 (9), 163 (10), 135 

(41), 134 (100), 119 (84), 108 (57), 91 (55). 79 (24). 

Preparation and direct observation of 3-ethylidene-2-methylene-2,3-

dlhydrofuran (12). To a deaerated solution of 3-(l-acetoxyethyl)-2-[(trimethyl-

silyl)methyl]furan 15 (0.2 g, 0.8 mmol) in dg-acetonitrile (3.0 mL) under nitrogen was 

added TBAF (1.1 g, 3.5 mmol). The solution was stirred for 5 min and then was dJstUled 

under reduced pressure (5-8 mmHg) at ambient temperature which was regulated by 

use of a water bath. The distillate was trapped, in a cold-trap at -78°C. After distillation, 

the solidified distillate was warmed to room temperature and the NMR spectrum of 

the solution was obtained: NMR (CD3CN) 5 1.79 (d. 3H, J=7.6 Hz) 4.47 (s, IH), 4.72 

(s, IH), 5.84 (q, IH, J=7.6 Hz), 6.00 (bs, IH), 6.85 (bs, IH). The ^H NMR spectrum of E-

295b reported by Huang: (CDCI3) S 1.16 (s, 9H), 4.52 (d, J=2 Hz. IH), 4.68 (J=2 Hz, IH). 

5.81 (s. IH), 6.06 (d, J=2.7 Hz. IH), 6.77 (m. IH). 

Preparation and direct observation of 2-ethylidene-3-methylene-2,3-di-

hydrofuran (13). o-QDM 13 was prepared following the procedure described in the 

preparation of o-QDM 12 from a deaerated solution of 3-(l-acetoxyethyl)-2-

[(trlmethylsllyl)methyllfuran 16 (0.3 g. 1.3 mmol) in dg-acetonltrile (3.0 mL) and TBAF 

(1.4 g. 4.4 mmol) and the ^H NMR spectrum of 13 was obtained. On the basis of ^H 
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NMR Spectrum, we concluded that a mixture of cls-trans isomers In a ratio ca. 2 to 1 

was obtained. We assigned the Z-conflguratlon to the major dlmer. Since 13 Is 

relatively reactive and dlmerlzed effectively during the data acquisition process, the 

NMR signals of 13 were mixed with the signals of the dimers. Only the signals of the 

vinylic protons of 13 can be clearly Identified. The major Isomer of 13: NMR 

(CD3CN) 8 4.60 (s, IH), 5.00 (s, IH). 5.30 (q, J=8 Hz, IH). 5.76 (s. IH), 6.90 (s, IH). The 

minor isomer of 13: ^H NMR (CD3CN) 8 5.00 (s. IH), 5.10 (s, IH), 5.43 (q, J=8 Hz, IH). 

5.80 (s, IH). 6.77 (s, IH). The ^H NMR spectrum of Z-4 reported by Huang^b; (CDCI3). 8 

1.15(s. 9H). 4.74 (d, J=1 Hz, IH), 4.96 (d, J=1 Hz, IH), 5.25 (s, IH), 5.75 (d, J=3 Hz, IH). 

6.77 (br. IH). 

Preparation and direct observation of 2,3-ethylidene-2,3-dlhydrofuran 

(14). o-QDM 14 was prepared following the procedure described in the preparation 

of o-QDM 12 from a deaerated solution of 3-( 1 -acetoxyethyl) -2- [ 1 -(trimethylsllyl) -

ethyl]furan 17 (0.1 g, 0.4 mmol) in da-acetonitrile (2 mL) and TBAF (0.5 g. 1.6mmol) 

and the ^H NMR spectrum of o-QDM 14 was obtained. In this experiment, we obtained 

two cis-trans Isomers in a ratio of 2:1 in the solution. We assigned them as EE-14 

and ZE-14. The major Isomer of 14: ^H NMR (CD3CN) 8 1.68(d. J=7.3 Hz, 3H), 1.74 

(d, J=8.0 Hz, 3H), 5.16 (q, J=7.3 Hz, IH), 5.59 (q, J=8 Hz. IH), 5.97 (d, J=2.7 Hz, IH), 6.88 

(broad s. IH). The minor Isomer of 14: 1.74 (d, J=8 Hz, 3H), 1.84 (d, J=8Hz. IH). 5.30 

(q. J=8 Hz. IH). 5.64 (q. J=8 Hz. IH), 6.03 (m, IH), 6.85 (broad s, IH). 

Deuterated EE-14 and ZE-14 were generated in the same manner. Their 

spectra were obtained from the spectrum of the distillate. The product ratio Is ca. 2:1. 

The major cis-trans isomer of d-14: 1.67 (d, J=7.3 Hz, 3H), 1.73 (s. 3H), 5.14 (q, 7.3 Hz, 

IH), 5.96 (d, J=2.6 Hz, IH), 6.88 (d, J=2.6 Hz, IH). The minor cis-trans isomer of d-14: 
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1.74 (d. J=8 Hz. 3H). 1.83 (s. 3H). 5.34 (q. J=8 Hz. IH). 6.02 (d. J=2.8 Hz. IH), 6.84 (d. 

J=2.8 Hz. IH). 

Dlmerizatlon of 3-ethylldene-2-methylene-2,3-dihydrofuran (12). To a 

deaerated solution of 3-(l-acetoxyethyl)-2-[(trimethylsilyl)methylIfuran (15) (489 mg. 

2.08 mmol) in acetonitrile (130 mL) under nitrogen was added a deaerated solution of 

TBAF (2.5 g, 7.9 mmol) in acetonitrile (20 mL). The solution was stirred for 72 h. and 

then the solvent was removed in vacuo. The residue was taken up with a small amount 

of diethyl ether and chromatographed on neutral alumina (Brockman activity grade 

1) with a mixture of hexanes and diethyl ether (1:1) as the eluent. The isolated yield of 

the dimer mixture was 78 mg (35%). GC analysis showed that seven components were 

present in the mixture. The mixture was chromatographed on silica gel (60-200 mesh, 

. 22x48 cm. flow rate 6-8 mL/min) with hexanes. This provided a mixture which 

contained 35 and 31 as the major components In the first band, partially resolved 34 

In the second band and completely resolved 30 in the third band. The forth band was 

collected effectively by changing the eluent to a mixture of hexanes and ether (1:1) and 

this gave essentially pure 33. The mixture from the first band was further 

chromatographed on basic alumina (150 g, Brockman activity grade 1) with hexanes 

as the eluent. This afforded pure 35 in earlier fractions of the first band and 

completely resolved 31 in the second band. Finally, the partially resolved 34 was 

chromatographed on neutral alumina (Brockman activity grade 1) with hexanes as 

the eluent and essentially pure 34 was obtained; GC/MS, temperature program, 

initial (time), rate, final (time), 100 °C (5 min), 4 °C/min, 200 °C (10 mIn). DImer 

30 (GC retention time 23.27 min): NMR (CDCI3) 8 1.29-1.27 (2d, 6H), 2.85-2.83 (m, 

2H), 3.14-2.97 (m, ABCD . 4H). 6.14 (d, J=1.6 Hz. 2H). 7.14 (d. J=1.6 Hz, 2H); mass 

spectrum, m/e (relative Intensity) 216 (19), 210 (4), 187 (8), 108 (100), 79 (18). DImer 
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31 (GC retention time 25.52 min): NMR (CDCI3) Ô 1.13 (d. J=7.0 Hz. 6H). 2.92-3.02 

and 3.16-3.26 (two m. AA'BB'. 4H). 3.30 (q. J=7.0 Hz. 2H). 6.21 (d. J=1.8 Hz. 2H). 7.19 

(d. J=1.8 Hz, 2H): mass spectrum, m/e (relative Intensity) 216 (18), 210 (3), 187 (7), 108 

(100), 79 (18). • Dimer 32 (GC retention time 23.94 min): ^H NMR (CDCI3) S 1.20 (d, 

J=6.9 Hz, 3H),1.26 (m, IH), 1.72 (d, J=6.9 Hz, 3H), 1.94-2.00 (dd, Ji=1.51 Hz, J2=13.6 

Hz, IH), 2.57-2.86 (AB q, J=17.2 Hz, 2H), 2.93 (m, IH), 4.81 (q, J=6.9 Hz. IH), 5.72 (m, 

IH). 6.30 (d. J=1.8Hz. IH), 6.65 (bs, IH), 7.28 (d, J=1.8 Hz, IH); mass spectrum, m/e 

(relative intensity) 216 (20), 201(4), 187 (11), 108 (100), 79 (14). . 33 (GC retention 

time 21.44 min): ^H NMR (CDCI3) 8 1.00 (d, J=6.8 Hz, 3H), 1.13 (d. J=7.1Hz. 3H), 2.08 

(m, IH), 2.30 (dd, .Ji=6.4 Hz. J2=16.7 Hz. IH). 2.66 (q, 7.1 Hz, IH), 2.97 (dd, Ji=6.0 Hz. 

J2 =16.6 Hz. IH), 3.87 (d, J=2.0 Hz. IH), 4.69 (d, J=2.0 Hz, IH), 5.09 (d, J=2.9 Hz, IH), 

6.20 (d, J=1.8 Hz, IH), 6.47 (d. J=2.9 Hz, IH), 7.26(d, J=1.8 Hz, IH); mass spectrum, 

m/e (relative intensity) 216 (12), 201 (4), 187 (9), 108 (100), 79 (19). 34 (GC retention 

time 21.57 min): ^H NMR (CDCI3) 8 0.93 (d, J=6.6 Hz, 3H), 1.01 (d, J=7.0 Hz, 3H). 1.96 

(m, IH), 2.31 (m, Ji=2.8 Hz, J2=11.4 Hz, J3=16.6 Hz, IH), 2.58 (m, IH), 2.70 (dd. Ji=5.4 

Hz. J2=16.7 HZ. IH). 4.04 (d. J=2.4 Hz. IH). 4.70 (d. J=2.4 Hz. IH). 4.78 (d. J=2.9 Hz. IH). 

6.22 (d. J=1.8 Hz, IH). 6.54 (d. J= 2.9 Hz. IH), 7.24 (d, J=1.8 Hz, IH); mass spectrum, 

m/e (relative intensity) 216 (15). 201 (4), 187 (10), 108 (100), 79 (19). 35 (GC 

retention time 22.79 min): mass spectrum m/e (relative intensity) 216 (18), 201 (5), 187 

(10), 108 (100), 79 (18). 37 (GC retention time 22.61 min): mass spectrum, m/e 

(relative intensity) 216 (19), 210 (5), 187 (15), 108 (100), 79 (19). 

Pyrolysls of [4+2] dimer 34. Dimer 34 (retention time 21.57) (-10 mg) was 

flash vacuum pyrolyzed (oven 658-665°C; sample chamber 55-60°C; pressure 2.1x10'^ 

torr) in a normal manner^® to give a crude mixture with two major components. The 

mixture was taken up with hexanes and chromatographed on silica gel with hexanes 
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to give a relatively pure mixture. GC/MS and NMR analyses showed that both of 

them are (4+41 dimers 35 and 36 In a 2:1 ratio.: GC/MS, (70 eV) m/e (relative 

intensity) 35 (retention time 22.75 min) 216 (30), 201(5), 187 (14), 108 (100), 79 (17). 

36 (retention time 22.23 min) 216 (30), 201 (5), 187 (14), 108 (100), 79 (17). 

Dimerization of 2-ethylldene-3-inethylene-2,3-dihydrofuran (13). To a 

deaerated solution of 16 (220 mg, 0.92 mmol) in acetonltrile (10 mL) under nitrogen 

was added a solution of TBAF (1.3 g, 4 mmol) in acetonltrile (10 mL). The solution was 

stirred overnight and the solvent was removed under reduced pressure. The residue 

was taken up with a small amount of water and the aqueous layer were extracted with 

hexanes. The extracts were combined, dried over anhydrous Na2S04 and concentrated 

under reduced pressure (98.4 mg, 98 %). A sample of the crude products was subjected 

to NMR and GC/MS analyses. Seven dimers were identified by GC/MS analyses. 

The crude dimer mixture was then chromatographed on a silica gel column with 

hexanes as the eluent. Six dimer samples of 38-43, pure enough for NMR analyses, 

were obtained. The disproportionatlon product 44 could not be isolated and identified 

directly. However, sufficient evidence to support the structural assignment was 

obtained after pyrolysis of the dimer mixture was performed. The temperature 

program used for GC/MS analyses: initial temperature (time), rate, final temperature 

(time), 120°C (5 min), 5 °C/mIn, 200 °C (5 min). [4+4] Dimer 38: GC retention time 

(relative intensity) 16.36 min (12 %); ^H NMR (CDCI3) 5 1.32-1.35 (m, 6H), 2.69-2.85 

(m, AA'BB', 4H), 3.12-3.17 (m, 2H). 6.03 (d, J=1.8 Hz, 2H), 7.14 (d, J=1.8 Hz. 2H): mass 

spectrum, m/e (relative intensity) 216 (M+, 31). 201 (11). 187 (16). 159 (5), 109 (28), 108 

(100), 107 (17), 79 (25), 77 (13). [4+4] Dimer 39: GC retention time (relative Intensity) 

17.59 min (18 %); ^H NMR (CDCI3) 5 1.22 (d, J=7.0 Hz. 6 H). 2.55-2.66 and 2.96-3.05 

(m. AA'BB'. 4H). 3.48 (q, J=7 Hz, 2H). 6.10 (J=1.7 Hz. 2H). 7.20 (d. J=1.7 Hz, 2H): mass 
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spectrum, m/e (relative Intensity) 216 (M+. 30). 201 (10). 187 (15). 109 (27). 108 (100). 

107 (17). 79 (24). 77 (12). [4+2] Dlmer 40: GC retention time (relative intensity) 15.90 

min (33 %). NMR (CDCI3) 5 1.12 (d. J=7.0 Hz. 3H). 1.61 (d. J=6.8 Hz. 3H). 1.80-1.84 

(m. 2H). 2.36-2.48 (m. IH). 2.64-2.75 (m. IH). 2.79 (q. J=7.0 hz. IH). 4.24 (q. J=6.8 Hz. 

IH). 5.00 (d. J=2.8 Hz. IH). 6.17 (d. J=1.8 hz. IH). 6.52 (broad s. IH). 7.26 (broad s. IH); 

mass spectrum, m/e (relative intensity) 216 (M+. 26). 201 (10). 187 (15). 109 (25). 108 

(100). 107 (21), 79 (30). 77 (15). [4+2] Dimer 41: GC retention time (relative intensity) 

16.39 min (12 %); ^H NMR (CDCI3) 5 1.05 (m. J=6.9 Hz, IH). 1.69 (d, J=6.8 Hz, 3H). 

1.72-1.80 (m, 2H). 2.68 (q. J=6.9 Hz. IH). 4.43 (q, J=6.8 Hz, IH), 5.02 (d, J=2.9 Hz. IH), 

6.18 (d, J=1.9 Hz, IH). 6.53 (d. J=2.9 Hz, IH), 7.26 (d. J=1.9 Hz. IH); mass spectrum, 

m/e (relative intensity) 216 (M+. 24). 201 (10). 187 (14). 159 (44). 109 (25). 108 (100). 107 

(19). 79 (28). 77 (13). [4+2] Dimer 42: GC retention time (relative intensity) 17.14 min 

(18 %): iH NMR (CDCI3) 5 1.23 (d. J=7.12 Hz. 3H), 1.60 (d. J=7.7 Hz. 3H). 1.72-1.81 (m. 

IH). 2.28-2.42 (m, IH), 2.43-2.58 (m. 2H). 2.81 (q. J=7.1 Hz. IH). 5.10 (dd. Ji=2.9 Hz. 

J2=0.9 HZ. IH). 5.32 (q. J=7.7 Hz. IH). 6.17 (d. J=1.8 Hz. IH). 6.36 (d. J=2.9 Hz. IH). 7.26 

(d. J=1.8 Hz. IH); mass spectrum, m/e (relative intensity) 216 (M+. 16). 201 (7). 187 

(11). 109 (23). 108 (100). 107 (18). 79 (26). 77 (13). [4+21 Dimer 43: GC retention time 

(relative intensity) 17.24 min (4 %); ^H NMR (CDCI3) 8 1.13 (d. J=6.8 Hz. IH). 1.73 (d, 

J=7.6 Hz, IH), 1.88-1.94 (m, IH). 2.33-2.43 (m. IH). 2.47-2.53 (m. 2H). 3.30 (q, J=6.8 Hz, 

IH), 4.92 (d. J=2.9 Hz. IH). 5.16 (q. J= 7.7 Hz. IH), 6.20 (d, J= 1.7 Hz, IH), 6.39 (d, J=2.9 

Hz. IH). 7.26 (d. J=1.7 Hz. IH); mass spectrum, m/e (relative intensity) 216 (M+. 24). 

201 (10). 187 (13). 109 (22). 108 (100). 107 (16). 79 (19). 77 (10). Disproportionation 

product 44: GC retention time (relative intensity) 16.04 min (2 %); mass spectrum, 

m/e (relative intensity) 216 (M+. 22). 201 (5). 187 (9), 159 (4), 109 (100), 108 (20), 107 

(23), 94 (4), 81 (16), 79 (17), 77 (20). 65 (6), 53 (10). 
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Flash vacuum pyrolysis of the dimer mixture of 38-44. FVP of a dimer 

mixture of 38-44 (-20 mg) was performed at 614-620 °C under vacuum (2.1x10"^ 

torr). The pyrolysate was collected in a liquid nitrogen cold trap. After the pyrolysis 

was finished, 1 to 2 mL of CDCI3 was Introduced into the trap. The trap was then 

allowed to warm to room temperature. The NMR spectrum of the pyrolysate was 

collected as a record of the original pyrolysate and a sample of the solution was 

subjected to GC/MS analyses. The deuterated solvent of the solution was then distilled 

under vacuum at ambient temperature. The distillate was trapped in a cold trap 

Immersed in dry Ice-acetone bath. Since the fragmentation product 45 has a low 

molecular wèight, it was distilled along with the deuterated solvent. The trapped 

distillate was warmed to room temperature and the NMR spectrum of 45 was 

obtained The residue of the distillation was then subjected to a silica gel column and 

chromatographed with hexanes as the eluent to provide dimer samples of 38, 39, 44 

and 46 pure enough for NMR analyses. By combining the information from the 

NMR and mass spectra, pyrolysis product 47 was identified (Table 5). Pyrolysis 

Table 5. FVP of the dimer mixtures of 2-ethylIdene-3-methylene-2,3-di-
hydrofuran (13) 

Precursor 

Mixture of 38-44'' Mixture of 40 and 41^ 

Pyrolysis product Retention time, min (yield, %) Retention time, min (yield, %) 

45 4.05 (5.0) 4.05 (42.9) 

47 13.27 (0.5) 13.32 (3.2) 

44 13.65(11.2) 13.68 (14.6) 

38 13.86 (41.7) 13.89(16.1) 

39 14.79 (39.8) 14.82 (12.9) 

46 15.53 (2.1) 15.58 (10.3) 
" FVP at 614-620 °C under vacuum (2.1x10torr). 
^ FVP at 625-638 °C under vacuum (1.4x10"^ torr). 
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of a mixture of [4+2] dimers 40 and 41 also gave rise to the. same products. However, 

their distributions are different. Dlsportlonatlon product 44: NMR (CDCI3) 6 1.10 

(t. J=7.5 Hz. 3H), 2.46 (q. J=7.5 Hz. 2H). 2.56-2.64 (m. AA'BB', 4H), 5.07 (d of d, Ji=11.4 

Hz. J2=1.5 HZ. 1H). 5.55 (d of d. Ji=17.4 Hz. J2=1.5 Hz. IH). 6.15 (d. J=1.7 Hz. IH). 6.20 

(d. J=1.8 Hz, IH). 6.41 (d of d, Ji=17.4 Hz, J2=11.4 Hz, IH), 7.22 (m. 2H); mass 

spectrum, m/e (relative Intensity) 216 (M+, 16), 201 (5). 187 (9). 159 (4), 109 (100), 108 

(19), 107 (25), 81 (18), 79 (18), 78 (4), 77 (21). Fragmentation product 45: ^H NMR 

(CDCI3) 5 2.05 (s, 3H)). 5.10 (d of d, Ji=11.3 Hz. J2= 1.3 Hz. IH). 5.55 (d of d Ji=17.4 Hz. 

J2=1.3 Hz, IH), 6.52 (d of d, Ji=17,4 Hz, J2=11.3 Hz. IH). 7,25 (d. J=1.7 Hz. IH); mass 

spectrum, m/e (relative Intensity), 108 (M+, 100), 108 (32), 79 (78), 77 (50), 55 (11), 53 

(23), 51 (22), 50 (12), 39 (32). Compound 47: mass spectrum m/e (relative Intensity). 

216 (M+. 100), 201 (10), 187 (38), 173 (9), 171 (10). 159 (23), 155 (10), 145 (18), 131 (23). 

129 (10). 128 (14). 115 (23), 108 913). 93 (41). 91 (17). 77 (16), 69 (14), 65 (12), 64 (15). 57 

(35), 55 (41), 51 (19), 43 (33), 41 (16). 39 (22). Product 46: 1h NMR (CD3CN) S 1.21 (t. 

J=7.5 Hz. 6H), 2.68 (q. J=7.5 Hz, 4H), 6.52 (s, 2H), 6.55 (d, J=2.0 Hz. 2H). 7.25 (d. J=2.0 

Hz. 2H): mass spectrum, m/e (relative intensity) 216 (M+, 100), 201 (10), 187 (36), 173 

(8), 171 (10), 159 (22), 155 (10), 145 (17), 131 (22). 129 (10). 128 (15). 115 (18). 108 (15). 

93 (30), 91 (14), 77 (14), 69 (10). 65 (10). 64 (14), 57 (34). 55 (34). 51 (14). 43 (27), 41 (11). 

39 (17). 

Dlmerizatlon of 2,3-diethylene-2,3-dihydrofuran (14). To a deaerated 

solution of 3-(l-acetoxyethyl)-2-[l-(trlmethylsllyl)ethylIfuran (17) (SOOmg, 1.2 mmol) 

in acetonitrile (10 mL) under nitrogen was added a solution of TBAF (1.5 g, 4.8 mmol) 

in acetonitrile (10 mL). The solution was stirred for 72 h and the solvent was removed 

under reduced pressure. Water was added to the residue, and the solution was 
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extracted with hexanes twice. The extracts were combined and washed with brine, 

dried over anhydrous Na2S04, and concentrated under reduced pressure. A sample of 

the mixture was Subjected to GC/MS analyses, and four major dimers and ten minor 

dimers were identified. The mixture was then subjected to a silica gel liquid 

chromatography with hexanes as the eluent, and the major dimers were separated 

and identified as 48-51. However, the minor [4+4] dimer 54 could not be identified 

until pyrolysls of 48 was performed. [4+4] dimer 48: NMR (CDCI3) 6 1.32 (d, J=6.4 

Hz, 3H), 1.37 (d, J=6.5 Hz. 3H), 2.62 (m, 2H). 2.99 (m. 2H), 6.03 (d. J=1.8 Hz. 2H), 7.07 (d. 

J=1.8 Hz. 2H): mass spectrum m/e (relative intensity) 244 (M+. 16), 215 (4), 187 (3), 123 

(13), 122 (100), 121 (5). 107 (38), 79 (5). 77 (9). [4+2] dimer 49: ^H NMR (CDCI3) 5 0.87 

(d, J=6.6 Hz. 3H). 1.18 (d. J=7.0 Hz. 3H). 1.21 (d. J=6.8 Hz. 3H). 1.47 (m. IH), 1.74 (d, 

J=6.9 Hz, 3H). 2.20 (m. IH), 2.65 (q. J=7.0 Hz. IH), 4.35 (q, J=6.9 Hz, IH), 4.99 (d, J=2.8 

Hz, IH). 6.22 (d. J=1.8 Hz. IH). 6.48 (d. J=2.8 Hz, IH), 7.24 (merged with CHCI3): mass 

spectrum, m/e (relative intensity) 244 (M+, 13). 215 (4). 187 (3). 123 (12). 122 (100). 121 

(6), 107 (42), 79 (6). 77 (8). [4+2] dimer 50: ^H NMR (CDCI3) 5 0.90 (d. J=7.0 Hz. 3H). 

1.05 (d. J=6.9 Hz. 3H). 1.09 (d. J=7.3 Hz, 3H). 1.71 (d. J=6.8 Hz. 3H). 1.93 (m. IH). 2.62 

(d. J=7.3 Hz. IH), 2.75 (m, IH), 4.34 (q, J=6.8 Hz, IH), 4.86 (d. J=2.9 Hz, IH), 6.25 (d. J= 

1.8 Hz, IH), 6.56 (d. J=2.9 Hz. IH). 7.27 (d of d, Ji=1.8 Hz, J2=1.0 Hz. IH); mass 

spectrum, m/e (relative intensity) 244 (M+. 14), 215 (4), 187 (3), 123 (11), 122 (100), 121 

(5). 107 (40), 79 (5), 77 (8). [4+4] dimer 51: ^H NMR (CDCI3) 5 1.09 (d, J=6.8 Hz, 6H). 

1.19 (d. J=6.8 Hz. 6H). 3.28 (m. 2H). 3.50 (m. 2H). 6.21 (d, J=1.7 Hz. 2H). 7.23 (d. J=1.7 

Hz. 2H). mass spectrum m/e (relative intensity). 244 (M+. 16). 215 (4). 187 (2). 123 (10). 

122 (100). 121 (4). 107 (35). 79 (5). 77 (8). 

Dlmerlzatlon of deuterated o-QDM 14 was performed in the same manner and 

deuterated dimers 48-51 were Isolated. [4+4] dimer d2-48: ^H NMR (CDCI3) ô 1.30 (s. 
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3H). 1.37 (d. J=6.6 Hz, 3H), 2.83-3.03 (m, 2H), 6.03 (d, J=1.8 Hz, 2H). 7.07 (d, J=1.7 Hz, 

2H): mass spectrum m/e (relative intensity) 246 (M+, 20), 124 (13), 123 (100), 122 (4), 

109 (2). 108 (26 ), 107 (8). [4+2] dimer d2-49; ^H NMR (CDCI3) S 0.86 (s. 3H), 1.18 (d. 

J=7.0 Hz. 3H). 1.25 (s, 3H). 1.74 (d, J=6.9 Hz, 3H), 2.65 (q, J=7.0 Hz, IH), 4.35 (q. J=6.8 

Hz, IH), 4.99 (d, J=2.9 Hz. IH). 6.22 (d. J=1.9 Hz. IH). 6.48 (d. J=2.9 Hz. IH). 7.24 

(merged with CHCI3): mass spectrum, m/e (relative Intensity) 246 (M+. 19). 124 (16). 

123 (100). 109 (3). 108 (40). 107 (13). [4+2] dImer dg-GO: ^H NMR (CDCI3) 8 0.90 (s. 3H). 

1.05 (d. J=7.0 Hz. 3H). 1.08 (s. 3H). 1.71 (d. J=6.8 Hz, 3H). 2.62 (d. J=7.0 Hz. IH). 4.34 (q, 

J=6.8 Hz, IH), 4.86 (d. J=3.0 Hz. IH). 6.25 (d. J=1.8 Hz. IH). 6.55 (d. J=2.9 Hz. IH), 7.26 

(m. IH): mass spectrum, m/e (relative intensity) 246 (M+. 18). 215 (6). 124 (14). 123 

(100). 108 (24). 107 (7). [4+4] dimer dg-Sl: ^H NMR (CDCI3) S 1.11 (s. 6H). 1.24 (d. 

J=7.1 Hz. 6H). 3.48-3.52 (m. 2H). 6.22 (d. J=1.7 Hz. 2H). 7.23 (merged with CHCI3 in the 

deuterated solvent), mass spectrum, m/e (relative Intensity) 246 (M+. 18). 124 (11). 123 

(100). 109 (2). 108 (25). 

Pyrolysis of deuterated [4+21 dimers d2-49 and dg-SO. FVP of dimer dg-

49 (4 mg. 0.02 mmol) was performed at 616-627 °C under vacuum (0.7x10'^ torr). The 

sample chamber was warmed to 40 °C during the pyrolysis. The pyrolysate was 

collected in a liquid nitrogen cold trap. After the pyrolysis was finished. 1 mL of CDCI3 

was Introduced into the cold trap. The trap was then warmed to room temperature 

and the ^H NMR spectrum of the pyrolysate was collected (Figure 4a). In addition, a 

sample of the solution was subjected to GC/MS analyses. Two fragmentation products 

d2-52. d2-B3 and three [4+4] dimers d2-48, d2-54 and d2-S5 were identified by 

GC/MS analyses (Table 6). The temperature program used In the GC/MS analyses: 

Initial temperature (time), rate, final temperature (time), 80 °C (10 min). 1.5 °C/min, 

160 °C (30 min). Fragmentation products d2-S2: GC retention time (relative Intensity) 
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4.84 min (16 %); mass spectrum, m/e (relative intensity) 123 (M+, 75), 109 (7), 108 

(100), 107 (10). 94 (4). 93 (1). 92 (12). 92 (16), 91 (5). 80 (58). 79 (22), 78 (71), 77 (36). 

Fragmentation product d2-53: GC retention time (relative intensity) 5.18 min (4 %); 

mass spectrum, m/e (relative intensity) 123 (M+. 87). 109 (7). 108 (100), 107 (39). 94 

(10). 93 (2). 92 (16). 91 (5). 80 (58X 79 (22). 78 (71). 77 (36). [4+4] dimer d2-54; GC 

retention time (relative intensity) 51.46 min (15 %) ; mass spectrum, m/e (relative 

intensity) 246 (M+, 19), 124 (15), 123 (100), 122 (4). 108 (28). 107 (10). [4+4] dimer 

d2-48: GC retention time (relative intensity) 52.25 min (21 %) ; mass spectrum, m/e 

(relative Intensity) 246 (M+. 16). 124 (13). 123 (100). 122 (4). 108 (29). 107 (10). [4+4] 

dimer dg-SS: GC retention time (relative Intensity) 58.06 min (36 %) ; mass spectrum, 

m/e (relative intensity) 246 (M+. .19). 124 (11). 123 (100). 122 (4). 108 (28). 107 (9). 

FVP of dimer dg-SO (4 mg. 0.02 mmol) was performed at 614-622 °C under 

vacuum (0.7x10'® torr). The sample chamber was warmed to 40 °C during the 

pyrolysls. The pyrolysate was collected In a liquid nitrogen cold trap. After the 

pyrolysls was finished. 1 mL of CDCI3 was Introduced Into the cold trap. The trap was 

then warmed to room temperature. The NMR spectrum of the pyrolysate was 

collected (Figure 4b). In addition, a sample of the solution was subjected to GC/MS 

analyses. Two common fragmentation products d2-52 and dg-SS were Identified by 

GC/MS analyses . However, only two major peaks for the [4+4] dimers. Instead of three 

as In the pyrolysls of d2-49. were observed. This observationis rationalized by 

suggesting that the retention times of dimers 56 and 57 are nearly the same and the 

signals overlap. The dimer with a retention time of 60.46 min was identified as [4+4] 

dimer d2-51. This assignment was further confirmed by the chemical shifts in the 

NMR of the pyrolysate. [4+4] dimer d2-56 and dg-ST: GC retention time (relative 

intensity) 58.36 min (28 %); mass spectrum, m/e (relative Intensity) 246 (M+, 16), 124 
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(11). 123 (100). 122 (4). 109 (2) 108 (27). 107 (9). [4+4] dlmer dz-Sl: GC retention time 

(relative intensity) 60.46 min (42 %) ; mass spectrum, m/e (relative intensity) 246 (M+, 

15). 124 (10). 123 (100). 122 (4). 109 (2) 108 (28). 107 (9). 

Table 6. GC/MS analyses of the original dimers of deuterated p-QDM 14 and the 
major components in the pyrdlysates of the deuterated [4+2] dimers 49 
and 50 

GC retention time . min (yield %) 

Assigned structure Dimer of o-QDM 14 Pyrolysate of 49 Pyrolysate of SO 

Fragmentation 
Product 52 

- • 4.84(17) 4.85 (16) 

Fragmentation 
Product 53 

- 5.18 ( 4) 5.19 ( 4) 

[4+41 dimer 
54 

- 51.46 (15) .b 

[4+4] dimer 
48 

52.42 ( 6.5) 52.25 (21) -

[4+2] dimer 
49 

54.15 (38.6) - -

[4+2] dimer 
50 

58.00 (36.0) - -

[4+4] dimer 
55 

58.06 ( - 2) 58.06 (37) Jb 

[4+4] dimer 
56 and 57 

[ 
[4+4] dimer 

51 

- .a 58.36 (27) [4+4] dimer 
56 and 57 

[ 
[4+4] dimer 

51 
60.43 ( 6.5) .a . 60.40(40) 

The minor components, which are less than 3 %. may be generated from the 
impurity in the pyrolyzed sample of 49 

^ The minor components, which are less than 4 %, may be generated from the 
impurity in the pyrolyzed sample of BO 
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APPENDIX 
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Dimers 30-35. 37 

CHz 

12 

NMR spectrum (300 MHz, CDCI3) of the dimer mixture of 3-ethylidene-2-methylene-2,3-di-Figure A-1. 
hydrofuran (12). 
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Figure A-2. Gas chromatograph (DBl,temperature program 100 ^C, 5 
min, 4 ^C/min, 200 °C, 10 min) of the dimer mixture of 
3-ethylidene-2-methylene-2,3-dihydrofuran (12) ( i: internai 
standard diphenylmethane, D: dimers). 
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NMR spectrum (300 MHz, CDCI3) .of the [4+4] dimerSO of 3-ethylldene-2-methylene-2,3-di-
hydrofuran (12) (s: chloroform, c: dichloromethane, w: HgO, H: high boiling residue from 
hexanes, the eluent). 
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Figure A-4. NMR spectrum (300 MHz, CDCI3) of the [4+4] dimer 31 of 3-ethylidene-2-methylene-2,3-di-
hydrofuran (12) (s: chloroform, wiHgO, H: high boiling residue from hexanes, the eluent). 
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Figure A-5. Ir NMR spectrum (300 MHz, CDCI3) of the [4+2] dimer 32 of 3-ethylidene-2-methylene-2,3-di-

hydrofuran (12) (s; chloroform, w: HgO. H; high boiling residue from hexanes, the eluent. U: 
diethyl ether). 
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Figure A-6. 
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6 . 4  2  0  P P M  
1h NMR spectrum (300 MHz, CDCI3) of the 14+2] dimer 33 of 3-ethylidene-2-methylene-2,3-di-
hydrofuran (12) (s: chloroform and one furan proton of the dimer, w: H2O, H: high boiling 
residue from hexanes, the eluent). 
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NMR spectrum (300 MHz, CDCI3) of the [4+2] dimer 34 of 3-ethylidene-2-methylene-2,3-di-
hydrofuran (12) (s: chloroform and one furan proton of the dimer, w: H2O, H: high boiling 
residue from hexanes, the eluent). 
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34 

6 ^ 2. 0 PPM 
NMR spectrum (300 MHz, CDCI3) of the pyrolysate of the [4+2] dimer 34 of 3-ethylid-

ene-2-methylene-2,3-dihydrofuran (12) (s: chloroform, w: H2O. H: high boiling residue from 
hexanes, the eluent). 
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NMR spectrum (300 MHz, CDCI3) of the Dlels-Alder adducts ( 28) of methyl acrylate and 

3-ethylldene-2-methylene-2,3-dihydrofuran (12). 
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Figure A-10. Gas chromatograph ( DBl, temperature program. 80 °C (5 min), 5 °C/mln, 
200 °C) of the Diels-Alder adducts (28) of methyl acrj late and 3-ethylidene-2-
methylene-2,3-dihydrofuran (12) (A: Diels-Alder adducts). 
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Figure A ll. ^H NMR spectrum (300 MHz, CDCI3) of the dimer mixture of 2-ethylidene-3-methylene-2,3-dI-

hydrofuran (13). 
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Figure A-12. Gas chromatograph (DBl,temperature program, 60 °C, 5 mln, 2 °C/min 180°C) of the 
dimer mixture of 2-ethylIdene-3-methylene-2,3-dihydrofuran (13) (D: dimer). 
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Figure A-13. NMR spectrum (300 MHz, CDCI3) of the [4+4] dimer 38 of 2-ethylidene-3-methylene-2,3-di-
hydrofuran (13) (s: chloroform, w: HgO, H: high boiling residue from hexanes, the eluenl). 
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Figure A-14. NMR spectrum (300 MHz. CDCI3) of the [4+4] dimer 39 of 2-ethylidene-3-methylene-2.3-di-

hydrofuran (13)(s: chloroform, w HgO. H: high boiling residue from hexanes, the eluent). 
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iH NMR spectrum (300 MHz, CDCI3) of the 14+2] dimer 40 of 2-ethylidene-3-methylene-2,5-di-Figure A-15. 
hydrofuran (13) (s: chloroform, w: HgO. H: high boiling residue from hexanes, the eluent, i: 
dimer 41). 
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Figure A-16. 

PPM. 
H NMR spectrum (300 MHz, CDCI3) of the (4+2) dimer 41 of 2-ethylidehe-3-methylene-2,3-di-

hydrofuran (13) (s; chloroform and one furan proton of the dimer, w: H2O. H: high boiling 
residue from hexanes, the eluent). 
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Figure A-17, NMR spectrum (300 MHz, CDCI3) of the [4+2] dimer 42 of 

2-ethylidene-3-methylene-2.3-dihydrofuran (13) (s: chloroform and one 
furan proton of the dimer. w: H2O, H; high boiling residue from 
hexanes, the eluent). 
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NMR Spectrum (300 MHz, CDCI3) of the [4+2] dimer 43 of 2-ethylidene-3-methylene-2,3-di-
hydrofuran (13) (s: chloroform, w: HgO. H: high boiling residue from hexanes, the eluent). 
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Figure A-19. GC/ MS of the dlsproportionation dimer (44) of 2-ethylldene-3-methyl-
ene-2,3-dihydrofuran (13). 
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Figure A-20. 
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iH NMR spectrum (300 MHz. CDCI3) of the pyrolysate of the 14+2] dimer 
mixture of 40 and 41. 
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Figure A-21. Gas chromatograph (DBl, temperature program 120 °C, 15 °C/min, 310 °C) of the 
pyrolysate of the [4+2] dimer mixture of 40 and 41. 
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Figure A-22. NMR spectrum (300 MHz, CDCI3) of product 44 from the pyrolysis of the [4+21 dimer 
mixture of 40 and 41(s: chloroform, w: H2O, I; 46, D: 39). 
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Figure A-23. GC/MS of product 44 from the pyrolysls of the 14+2] dimer mixture of 40 and 41. 
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spectrum (300 MHz, CDCI3) of fragmentation product 45 from the pyrolysis of the 

TT^j. mixture of 40 and 41(s: chloroform and one furan proton of the dimer, w: H2O 
U. diethyl ether H: high boiling residue from hexanes, the eluent). 
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Figure A-25. H NMR spectrum (300 MHz. CDCI3) of product 46 from the pyrolysis of the [4+2] dimer 
mixture of 40 and 41(s: chloroform and one furan proton of the dimer, w: H2O, H: high 
bnilin.ff residue from hexanes, the eluent). 
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GC/MS of product 46 from the pyrolysis of the [4+2] dimer mixture of 40 and 41. 
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GC/MS of product 47 from the pyrolysis of the 14+2] dimer mixture of 40 and 41. 
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Figure A-28. 
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NMR spectrum (300 MHz. CDCI3) of 2-ethylIdene-3-(di-ethylidene)-2,3-dihydrofur£in 

(dj-14) (C: internal standard 1,2-dichloroethane, w: HgO, s: CDgHCN. Q: EE-14 and 2E-14). 
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Figure A 29. ^H NMR spectrum (300 MHz, CDCI3) of the dlmer mixture of 2,3-diethylidene-2.3-di-

hydrofuran (14). 
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NMR spectrum (300 MHz, CDCI3) of the dlmer mixture of 2-ethylldene-3-dj-ethylld-

ene-2,3-dihydrofuran (di-14). 
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Figure A-31. Gas chromatograph (DBl, temperature program, 60 «C, 5 min, 2 °C/min 180°C) of the 
dimer mixture of 2-ethylidene-3-(di-ethylidene)-2,3-dihydrofuran (dj-14). 
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Figure A-32. 
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NMR spectrum (300 MHz, CDCI3) of the [4+4] dimer 48 of 2,3-diethylidene-2,3-di-

hydrofuran (14) (D: dimer 48, s: chloroform, w: H2O, H: high boiling residue from hexanes, 
the eluent). 
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Figure A-33. NMR spectrum (300 MHz. CDCI3) of the [4+4] dimer 48 of 2-diethylidene-3-di-ethylidene-

2,3-dihydrofuran (dj-14) {D: dimer d2-48, s; chloroform, w; H2O, H: high boiling residue from 
hexanes, the eluent). 
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iH NMR spectrum (300 MHz. CDCI3) of the 14+2] dimer 49 of 2.3-dlethylidene-2 3-di-
hydrofuran (14) (D: dimer 49. s; chloroform, w: H2O. H: high boiling residue from hexanes 
the eluent). 
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Figure A 35. NMR spectrum (300 MHz, CDCI3) of the 14+2] dimer 49 of 2-diethylIdene-3-dj-ethylid-
ene-2,3-dlhydrofuran (dj-14) (D: dimer d2-49, s: chloroform, w: HgO). 
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NMR spectrum (300 MHz, CDCI3) of the (4+2] dimer 50 of 2.3-diethylidene-2,3-dl-
hydrofuran (14) (D: dimer 50, s: chloroform, w: H2O, H: high boiling residue from 
hexanes, the eluent). 
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Figure A-37. NMR spectrum (300 MHz. CDCI3) of the (4+21 dfmer 50 of 2-diethylldene-3-di-ethyIid-

ene-2.3-dihydrofuran (dj-14) (D: dimer dg-SO. s: chloroform, w: HgO. H: high boiling residue 
from hexanes, the eluent). 
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Figure A-38. NMR spectrum (300 MHz, CDCI3) of the [4+4] dimer 51 of 2,3-diethylidene-2,3-di-

hydrofuran (14) (D: dimer 51, s: chloroform, w: HgO, H: high boiling residue from hexanes, 
the eluent). 
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Figure A-39. 

2. 0 PPM. 
iH NMR spectrum (300 MHz, CDCI3) of the [4+4] dimer 51 of 2-dlethylidene-3-di-ethylId-
ene-2.3-dihydrofuran (dj-14) (D: dimer dg-Sl. s: chloroform, w; H2O. H: high boiling residue 
from hexanes, the eluent). 
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Figure A-40. 1h NMR spectrum (300 MHz. CDCI3) of the pyrolysate of the [4+2] dimer d2-49. 



www.manaraa.com

100.0—I 

RIC 

Wj 
I 

1000 
8 : 2 0  

JU. 

D 

i> ..I f 

D 

VO 
VO 

2000 
1 6 : 4 0  

3 0 0 0  
2 5 : 0 0  

4 0 0 0  
3 3 : 2 0  

5 0 0 0  
4 1 : 4 0  

Scan 
T i me 

Figure A-41. Gas chromatograph (DBl. temperature program, 80 °C, 10 min, 1.5 °C/min. 200 °C, 30 min) 
of the pyrolysate of the [4+2] dimer d2-49 (X: silicon grease. F: fragmentation product. 
D: [4+4] dimer). 
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1H NMR spectrum (300 MHz. CDCI3) of the pyrolysate of the [4+2] dimer dg-SO. Figure A-42. 
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Figure A-43. Gas chromatograph (DBl. temperature program, 80 °C, 10 min, 1.5 °C/min, 200 °C. 30 min) 
of the pyrolysate of the 14+2] dimer d2 SO (X: silicon grease, F: fragmentation product, 
D: [4+4] dimer). 



www.manaraa.com

102 

SECTION 2. THE DIMERIZATION KINETICS AND PRODUCTS ANALYSES, AND THE 
DIELS-ALDER REACTION KINETICS AND PRODUCT ANALYSES OF 
a-METHYL-o-XYLYLENE, a-CYCLOPROPYL-o-XYLYLENE, 
a-tert-BUTYL-o-XYLYLENE AND a-MESITYL-o-XYLYLENE. 
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INTRODUCTION 

Benzene-based o-quinodimethanes (o-QDM's), such as the parent o-xylylene (1), 

;CH2 

CHa 

have been a subject of much interest and have been used extensively as reactive dienes 

in organic synthesis during past three decades. ̂  Although it has been known for a 

long time that o-QDM's dimerize rapidly,^ the mechanisms of these dimerizations have 

not been completely elucidated. Recently, we have shown that the dimerization of the 

furan-based o-QDM, 2, which gives a high yield of the head-to-head 14+4] dimer 3, 

proceeds by a stepwise mechanism via a diradical intermediate 4.^ This mechanism is 

strongly supported by the results of a secondary deuterium kinetic isotope eifect 

ci": 
CHa CHg 

2 4 3 

study^ and by the results of a study of the effects of t-butyl substitution on the ends of 

the reactive diene system.^ 

Unlike the furan-based o-QDM 2, 1 dimerlzes to give mostly the [4+2] dimer 5 

as well as a small amount of the [4+4] dimer 6.2 Having obtained firm support for the 

mechanism of the dimerization of the furan based o-QDM 2, we set out to probe the 
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CHg 

1 5(90%) 6 (-10%) 

mechanism of the dimerlzation of the benzene-based o-QDM's. Since the main mode of 

dimerlzation of 1 Is the [4+2] mode, a. concerted mechanism following Woodward-Hoff

mann® rules, is a reasonable possibility. 

2 1 

In spite of the high reactivity towards dimerlzation, benzene-based o-QDM's 

have been observed directly by UV-vlsible spectroscopy both in solution^ and in a low 

temperature matrix, 8 by IR, Raman, fluorescence and fluorescence excitation 

spectroscopy in a low-temperature matrix,® and by UV-photoelectron spectroscopy in 

the gas phase. Recently, our research group has published the ^H NMR spectrum of 

1H and has measured the activation parameters of the dimerlzation of 1 and other 

reactive o-QDM's 7 and 8 by using the stopped-flow technique. Because the 

CH. 

CH 

8 



www.manaraa.com

105 

differences in the rate constants for dimerization of 1, 7, and 8 are small, it was 

suggested that the approach of monomers during dimerization is non-endo. Indeed, 

this observation does not rule out either the concerted or stepwise mechanism. 

Unfortunately, because of the low enthalpy of activation (AH^= 3-5 kcal/mol) of 

dimerization, which is consistent with an early transition state, the secondary kinetic 

isotope effect would be expected to be significantly reduced. In this situation. It is 

difficult to draw any firm conclusion from the kinetic isotope experiments. Moreover, 

the lack of a precise method to determine the relative dimerization rate constants for 

deuterated and non-deuterated o-QDM 1 further discouraged us from attempting the 

study. 

We thus decided to probe the dimerization mechanism by studying a series of 

a-substltuted o-QDM's 9 to 12. We anticipated that comparison of the regioselectlvlty 

of this series in the Diels-Alder reaction, a [4+2] cycloaddition that is thought to be a 

concerted (one-step) reaction, with the regioselectlvlty obtained in the dimerizations 

would allow us to draw some conclusions about the mechanism of the dimerization of 

benzene-based o-QDM's. 

CHg 

9 10 11 12 
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RESULTS 

Preparation of precursors for generation of o-qulnodlmethane inter

mediates. o-QDM's 9, 10 and 11 were generated In solution by fluoride ion induced 

1,4-ellmination from the quaternary ammonium salt precursors 13, 14, and 15. The 

TMS TMS TMS 

NMeo+I NMe3+1- NMe3+ p 

.13 14 15 

preparation of precursor 13 has been reported by Ito.^^ The syntheses of 14 and 15 

are based on a similar strategy and are shown in Scheme 1. Silylation of benzoate 16 

provided ot-silylated ester which was reduced by LIAIH^.^^ to give alcohol 18, 

followed by modified Collin's oxidation^® to give aldehyde 19. Imination^^ of 19 

followed by treatment of 20 with cyclopropyllithium^O at -10 or with tert-butyl-

lithium at -78 °C gave rise to secondary amines 21 and 22. The amines were 

methylated by reductive amination^^ to provide tertiary amines 23 and 24 which 

were further quatemized with methyl iodide to give 14 and 15, respectively. 

However, due to the steric hindrance introduced by the mesityl substituent, the 

preparation of the corresponding quaternary ammonium salt precursor failed. In 

order to solve this problem, other kinds of leaving groups were investigated. The 

problem was Anally overcome by employing trlchloroacetate as the leaving group. The 

synthesis of 25, the precursor of 12, is shown in Scheme 2. Since compound 25 Is 

unstable on silica gel and hydrolysed quickly to give back alcohol 26, precursor 25 

was used In the following studies without further puriflcatlon. 
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Scheme 1 

a 
16 

COOMe COOMe 

TMS TMS 

c ^ 18 R' = CHgOH 
^ 19 R = CHO 

d L20 R' = CH=NCH3 

TMS 

21R=C-C3H5 
22 R = CCCHgla 

CH3^ ^CHs 
N 

TMS 

23 R — c-CgHc 
24R=C(CH^3 

NMcs+I" 

TMS 

14 R = C-C3H5 
15R=C(CH3)3 

a, 2 LDA, TMSCl; b, LIAIH4: c. CrOg- 2Py: d. MeNHg in benzene: e. RLi: f. NaBHsCN. 
CHgO, HOAc: g, Mel in acetonitrile. 

Scheme 2 

CI3CCOCI 
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Product analyses of dlmerizations of o-quinodimethanes. In the absence 

of dienophiles, generation of o-QDM's 9, 10, 11, and 12 In acetonltrile with TBAF led 

to a variety of dimers In all cases. However, these product mixtures could not be 

analyszed by GC/MS due to the thermal Instability of the [4+21 dimers. The dimers 

were separated by liquid chromatography and analysed by NMR spectroscopy. In 

order to make sure that the dimers were coming from the original product mixtures, 

the NMR spectra of the Isolated dimers were compared with the NMR spectrum 

of the original product mixture. The results of the dimerization product analyses and 

their relative percentages are summarized In Table 1, 2, 3 and 4. Details about the 

structural assignment of the dimers are presented In the Experimental Section. 

In the dimerization of o-QDM 9, [4+2] dimer 27 was Isolated as the only major 

product (Table 1). Three other minor dimers were Identified as 28, 29, and 30. In 

contrast to o-xylylene (2) dimerization, no evidence for [4+4] dimers could be found by 

NMR spectroscopy. However, an unknown compound (-5 %), which may also be a 

dimer, was observed In the NMR spectrum of the dimer mixture. 

The dimerization of o-QDM 10 provided at least seven dimers which were 

Identified as dimers 31-37 (Table 2). Not surprisingly, the [4+2] dimers 31-35 were 

formed predominately. However, two [4+4] dimers 36 and 37 were found In this case. 

The structure of 31 was confirmed by ^H NMR spectroscopy. Thermolysis of 31 In 

1,4-cyclohexadIene at 80 °C for 2 h provided 36 and 37 in a ratio of 19:1. According to 

the GC/MS analysis, no other products such as cyclopropane ring opening products 

or diradical trapping products were found In the thermolysis. When dimer 31 was 

subjected to flash vacuum pyrolysis (FVP)22 at 540 °C, a mixture of 36 and 37 was 

obtained but In a different ratio, a ratio of 5:1. In addition, two minor components (0.7 

% and 2 %) were found in the GC/MS. Unfortunately, their structures could not be 
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Table 1. Dimerlzatlon products of a-methyl-o-xylylene (9) 

Product^ • • Mode of cycllzatlon Yield , % 

67 

9 (28) 
10 (29) 

9 

5 

^ Compound was Isolated from the dimer mixture and identified by NMR 
spectroscopy. 

b Each product number represents a single diastereomer. 

determined from the GC/MS data. The NMR spectrum of 32 is consistent with the 

assigned structure but firmer evidence was obtained from the FVP of 32 which 

produced, as did 31, a mixture of head-to-head [4+41 dimers 36 and 37. The structure 

31 or 32 36 and 37 

28a and 29a 

30a 

Unknown compound 

Head-to-head 
[4+21 

Head-to-tail 
[4+2] 

Head-to-tail 
[4+2] 
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Table 2. Dimerlzatlon products of a-cyclopropyl-o-:qrlylene (10) 

Product^ Mode of cycllzatlon Yield, % 

31° and 32° 

33° 

34b and 35b 

Head-to-head 
[4+2] 

Head-to-tall 
[4+2] 

Head-to-tail 
[4+2] 

53 (31) 
13 (32) 

11 (33) 

4 (34) 
3 (35) 

36° and 37° 

Head-to-head 
[4+4] 

< 16 
(36 and 37) 

38 and 39^ 

Head-to-tall 
[4+4] 

® Compound was Isolated from the dlmer mixture and Identified by ^H NMR 
spectroscopy. 

^ Structures were Identified on the basis of the ^H NMR spectroscopy of a 
mixture of 34 and 35. 

c Each structure number represents a single dlastereomer. 
d DImers 38 and 39 were obtained as a mixture from the FVP of 33 
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of 33 Is based on several key NMR signals, the ben^llc AB quartet and the vinyl 

doublet, which Is coupled to a cyclopropyl ring proton. FVP of 33 led to a pair of [4+4] 

dimers which are different from 36 and 37. These were assigned as the head-to-tail 

dimers 38 and 39. [4+2] Dimers 34 and 35 could not be separated and their 

' 38 and 39 33 

structural assignments are based on the NMR signals from the exo-methylene 

protons and benzylic proton (a doublet) which is coupled to a cyclopropyl ring proton. 

FVP of a mixture of 34 and 35 gave 38 and 39 In a ratio of 1.3:1. This result further 

FVP 
34 + 35 38 + 39 

supports the head-to-tail [4+2] assignment of 34 and 35. 

The dimerizatlon of o-QDM 11 at room temperature in acetonitrile provided a 

mixture of three dimers which were identified as head-to-head [4+2] dimer 40 and 

head-to-head [4+4] dimers 41 and 42 (Table 3). The Identity of the [4+2] dimer 40 was 

simply established by NMR spectroscopy and a NOESY experiment. On the 

other hand, the NMR spectra of the [4+4] dimers Indicated that one of the [4+4] dimers 

possesses an asymmetric conformation while the other possesses a symmetric 

conformation. Since the steric repulsion between the two adjacent els ferf-butyl groups 

of 41 tends to force the conformation of the elght-membered ring away from CTv 
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Table 3. Dlmerlzatlon products of a-fert-butyl-o-xylylene (11) 

Product^ Mode of cycllzatlon Yield. % 

80 

12 

8 

Compound was Isolated from the dimer mixture and identified by NMR 
spectroscopy. 

b Each compound number represents a single diastereomer. 

symmetry, this structure was assigned to the compound having the NMR 

spectrum with an asymmetric pattern. The steric repulsion of the two trans tert-butyl 

groups of the [4+4] dimer 42 does not affect the C2 symmetry of the structure and 

therefore this structure was assigned to the compound with the symmetrical NMR 

spectrum. Interestingly, the compound formed In the dlmerlzatlon at room 

temperature In acetonitrile to which we assigned structure 42 is thermally labile and 

converts to another symmetrical conformation in boiling acetonitrile. We attribute 

this observation to the Interconversion of di-equatorial 42 and dl-axlal 42 which are 

C(CH3)3 

(CHglsC 
40^ 

Head-to-head 
[4+21 

(CHglgC C(CH3)3 
4ia 

Head-to-head 
[4+4] 

(CHglaC C(CH3)3 
42a 

Head-to-head 
[4+4] 
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separated by a suflïciently high rotational energy barrier that Interconversion at room 

temperature Is slow.23 clearly, one conformation is signiilcantly more stable than the 

FVP of [4+2] dimer 40 at 550 °C provided a mixture of thermally stable 

symmetric [4+4] dimer 42 and asymmetric [4+4] dimer 41. Indeed, 40 is thermally 

unstable and undergoes an unimolecular rearrangement with a half-life of 27 min at 

63 °C in acetonitrile to give rise to the same mixture of the [4+4] dimers. 

o-QDM 12 generated from the trichloroacetate precursor 25 in TBAF solution 

dimerized to two head-to-head dimers 43 and 44 (Table 4). As expectedly, [4+2] dimer 

43 is also thermally unstable and rearranges to 44 under mild conditions. When 43 

was subjected to thermolysis in thiophenol or in 2-dliodopropane at 80 °C. the 

rearrangement product, [4+4] dimer 44, was Isolated. But interestingly, thermolysis of 

43 in thiophenol at 180 °C in a sealed tube generated the reduction product 45 and 

phenyl disulfide in a ratio of 1:1. 

other. An MM-X^^ calculation indicated that di-axial skewed form of 42 is the most 

stable conformation. 

C(CH3)3 

C(CH3)3 
C(CH3)3 

C(CH3)3 
di-axial 42 di-equatorial 42 

PhSH, at 180°C 

43 45 
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Table 4. Dimerization products of a-mesityl-o-xylylene (12) 

Product^ Mode of cyclization Yield, % 

Head-to-head 
[4+21 

58 

43°-

Head-to-head 
14+4] 

42 

44a 

^ Compound was isolated and identified by NMR spectroscopy. 
b Each structure number represents a single diastereomer. 

Regioselectivlty In the Diels-Alder reactions of o-quinodimethanes. In 

the presence of a dlenophlle, the «-substituted o-QDM's were trapped to produce 

Dlels-Alder^^ adducts (Table 5). In our investigation, methyl methaciylate was used as 

the dienophile In the regioselectivlty study. 

When o-QDM's 9, 10, 11, and 12 were generated in acetonitrile in the 

presence of an excess of methyl methacrylate, four types of Diels-Alder adducts were 

Identified by GC/MS and NMR spectroscopy and the results are summarized in 

Table 5. In all the cases, the "ortho" isomers are the major products. However, the 

relative ratio of "ortho" to "meta" isomers is affected significantly by the specific 

«-substituent on the o-QDM. 
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Table B. The Diels-Alder adducts of methyl methacrylate and o-QDM's 9, 10. 11 
and 12 

B  6 . 7  8  

Dlels-Alder adducts R = CHg ^ C-C3H5 ^ C(CH3)3 ^ Mesltyl ^ 

J^COjMe 8.8^(39:34)6 4.3d (26:25)6 2.2«i (13:6)6 5.8<^ (38:11)® 

R 

" ortho " 

jCQjMe 

1 (4.6:3.7)6 1 (6.2:5.7)® 1 (4.3:4.2)6 1 (4.4:4.0)® 

" meta " 
^ The reglochemistiy was determined by means of applying the ^NMR decoupling 

technique to the product mixture directly. 
^ The major "ortho" isomers were separated from the "meta" isomers and the 

regiochemistry was determined by means of applying the NMR decoupling 
technique to the "ortho" Isomer mixture directly. 

6 The Isomers were separated and identified by NMR spectroscopy. 
^ The "ortho" to "meta" ratio. 
6 The dlastereomerlc ratio. 

Stopped-flow kinetics and competitive kinetics experiments. The 

stopped-flow technique is a well known method which has been used to study the 

kinetics of reactive intermediates such as o-QDM's.^ The very rapid formation of an 

o-QDM, followed by its second order decay is monitored by UV-vlsible spectroscopy. 

From the measured second order decay curve, the rate of the dimerlzatlon of the 

o-QDM is determined. Since the dimerlzatlon is a second-order process, determination 

of the rate constant, k2, requires knowledge of the concentration of the o-QDM and 

this can be obtained by knowing the Em ax of the o-QDM. In our experiments, the 

Emax for o-QDM's 9 and 11 were determined in the following manner. Several runs 
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were carried out in which the optimum fluoride ion concentration was kept constant 

but the concentration of the quaternary ammonium salt precursor was varied. In 

each experimeiït, we obtained a maximum absorbance of the o-QDM intermediate. 

Assuming that the quaternary ammonium salt precursor was converted 

quantitatively to the corresponding o-QDM before much of the o-QDM intermediate 

had dimerized, we obtained the initial concentration of o-QDM. By using Beer's Law, 

the emax of the o-QDM was determined from the linear plot of the absorbances 

against the concentrations of the o-QDM. 

Rate constants for the dimerlzations of 9 and 11 from 10-50 °C were measured 

and these are reported in Table 6. The activation parameters evaluated from the rate 

constants and the Cmav's of 9 and 11 are summarized in Table 7. The dlmerizatlon 

rate constant, k2, for 9 and 11 at 25 °C are close to that for the parent o-xylylene (1) 

within one order of magnitude. All their activation enthalpies are around 3 to 4 

kcal/mol while the activation entropies are around -29 to -30 eu. 

Table 6. Second-order rate constants for the dlmerizatlon of 9 and 11 

Temperature, °C k2 (xlO'^) for 9, M'^s'l k2 (xlO'S) for 11, M'^s'^ 

14.75 — 0.782 ± 0.01 

15.50 6.80 ±0.07 

23.80 8.29 ± 0.01 

23.85 — 1.03 ±0.01 

29.65 — 1.16 ±0.01 
•ft 

30.40 9.49 ± 0.07 

37.10 — 1.45 ±0.01 

38.40 11.1 ±0.06 

44.45 — 1.72 ±0.05 

45.60 13.1 ±0.11 
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Table 7. Extinction coefficients and activation parameters for the dimerlzatlon 
of 1, 9, and 11 

o-QDM Extinction 
coefficient 

k2,®M-ls-l(xlO-3) AH^, kcal mol" 1 AS^, eu 

la 3015b 9.94 ±0.32 3.5 ±0.1 -29.0 ± 1.1 

9 3320C 8.69 ±0,30 3.3 ±0.1/ -29.6 ±0.2/ 

11 4234d 1.05 ± 0.04 4.2 ±0.1 -30.5 ± 0.4 
^ seeref. 15 
^ The Emax was measured at 367nm. 
^ The emax was measured at 377nm. 
^ The Emax was measured at 378nm. 
® Dimerlzatlon rate constant at 25 °C. 
/ Since we could not resolve the rate constants for the head-to-head and 

head-to-tail dimerlzatlon processes, the activation parameter reported here was 
determined from the total k2. 

Competition experiments^^ can be used to evaluate the rate constants for the 

Diels-Alder reactions of o-QDM's with dienophlles. For the two competitive reactions 

shown in equations (1) and (2), with the assumptions that the stoichiometric 

relationship 2[M2] oo+ [MDloo= (MJo holds and [D] {» [MIo) is a constant during the 

reaction, the product ratio is given by equation (3) where A=2k2 / (koA* P]). 

^2 
M + M Ma (1) 

M + D *" MD (2) 

R^= ^ [M]„-A-hnaMU+l) 

[MDL 2A-'ln((MloA+1) 
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In our experiments, several runs were carried out in which the initial 

concentration of o-QDM, [MqI. was kept constant but the concentration of the 

dienophile ID] was varied. In each run with different [D], a final product ratio 

Roo=IM2loo/IMDloo was obtained. On the basis of the (MIq, [D] and Roo. the rate constant 

ratio kg/koA was estimated by means of a non-linear curve fitting technique. 

Relative rate constants k2/kDA of 9 and 11 from 0-40 "C were measured and these 

are reported In Table 8. The activation parameters evaluated from the rate constants 

are summarized in Table 9. 

Table 8. Relative rate constants k2 / kpA for competition experiments of 
dimerization and Diels Alder reaction of o-QDM 9 and 11 

Temperature. °C k2 /kpA (xlO'^) of 9. M'l k2/kDA (xlO'3) of 11, M'^ 

0.20 4.72 ±0.16 

2.90 — 2.69 ±0.06 

3.40 — 2.62 ± 0.08 

8.40 4.40 ±0.18 

10.10 — 2.13 ±0.03 

15.80 — 2.03 ±0.02 

17,70 3.85 ±0.13 

21.30 3.67 ±0.11 

23.10 — 1.70 ±0.02 

29.00 3.32 ± 0.23 

32.50 3.15 ±0.11 

32.90 — 1.37 ± 0.02 

33.55 — 1.33 ±0.03 
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Table 9. The rate constant ratio and activation parameters of o-QDM's 9 and 11 
for competition between the dimerizations and DIels-Alder reactions 

o-QDM k2/kDA. M-1 ® kcal'^mol'l b.c AAS^, eu 

9 349 ±8 -2.1 ±0.1 4.5 ±0.4 

11 1607 ± 65 -3.7 ±0.1 2.2 ±0.5 

° The rate constant ratio at 25 °C. 
^ The activation parameter at 25 °C. 
^ Since we could not resolve the rate constants for each regio- and stereo-

isomeric pathway, in the Diels-Alder reaction, the activation parameter 
reported here was determined from the total ka/koA-
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DISCUSSION 

It Is well known that benzene-based o-QDM's are important intermediates in 

many kinds of reactions including ones used in natural product syntheses. ̂  In 

general. o-QDM's can be prepared from the electrocyclic ring opening of benzo-

cyclobutene derivatives photochemically or thermally or from 1,4-conJugative 

elimination of a,a'-substituted o-xylene derivatives. ̂  Ito and Saegusa first reported the 

fluoride induced 1,4-conJugatlve elimination from trimethylsllyl quaternary ammon

ium salt precursors to generate o-QDM's^'^ and applied it to natural product 

syntheses. However, some of the quaternary ammonium salt presursors, especially 

sterically congested ones, are difficult to prepare and thus application of this method is 

limited. In this investigation, we have found that trichloroacetate can be employed as 

an effective leaving group in fluoride Induced 1,4-conJugatlve elimination. This 

discovery leads to a new and convenient method for preparing a-substituted o-QDM's 

from the corresponding secondary alcohols. In addition, the successful generation of 

o-QDM 12 demonstrates that this method can be applied to sterically hindered 

alcohols. 

o-QDM's are reactive enough to be trapped by a variety of dienophiles at room 

temperature to form Diels-Alder adducts. In this study, we have found that although 

the cycloaddition of a-substituted o-QDM's with dienophiles shows a strong preference 

for the formation of the "ortho" regloisomers, the ratios between the "ortho" and 

"meta" isomers are dependent on the size of the substituents. In principle, the 

regloselectivity of the Diels-Alder reaction is controlled by a combination of electronic 

and steric factors, but electronic factors usually predominate.^^ Recently, it has been 

reported that both 46 and 47 undergo a Diels-Alder reaction more rapidly than the 

unsubstltuted compound which indicates that rate-accelerating electronic effects of 
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CHG ÇH3 
CH 

CC 
CH 
I I 

CH3 
46 47 

the methyl groups are more Important than rate-retarding steric effects. However, 

since the electronic donating ability of the methyl, cyclopropyl, tert-butyl, and mesityl 

substituents of «-substituted o-QDM's 9, 10, 11, and 12 should be similar, we 

attribute the regioselectivity differences in these cases to steric factors. In the 

following discussion, the mechanistic implications of the regioselectivity differences are 

presented. 

For all four of the a-substituted o-QDM's 9 to 12, the DIels-Aldèr reaction with 

methyl methacrylate gives more of the "ortho" than the "meta" isomer. This is easily 

explained by the similar electron donating ability of each of the four substituents. 

However, the change from methyl (9), to cyclopropyl (10), to tert-butyl (11) o-QDM 

results in a decrease of this ratio from 8.8 to 4.3 to 2.2, respectively (see Table 5). This 

regioisomer ratio shift can be rationalized in terms of steric hindrance in the "ortho" 

and "meta" transition states 48 and 49. Since the a-substituent of the o-QDM's and 

R 
48 49 

that of the olefins are adjacent to each other In the "ortho" transition state (48), this 

pathway should be more sensitive to the size of the substituent R at the a-posltlon of 
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the o-QDM's. Thus increasing the size of the a-substituent will retard the "ortho" 

pathway more effectively than the "meta" pathway and hence reduce the "ortho" to 

"meta" regioisomer ratio. 

The regioselectivity of 12 deviates from the trend of the other o-QDM's. Since 

the terminal methylene position of 12 is shielded by the o-methyl groups of the mesityl 

substituent, the concerted Diels-Alder reaction may be retarded completely and 

the reaction might become stepwise. In fact, the Diels-Alder trapping reaction of 12 is 

relatively slow. By using high dilution to retard the dimerization arid by increasing the 

dienophile to monomer ratio to enhance the extent of the trapping reaction, we 

isolated the Diels-Alder adducts in reasonable yield. The reaction gives predominately 

one "ortho" adduct along with three other minor regioisomers. 

The endo-exo selectivity of the "ortho" adducts is also sensitive to the size of the 

a-substituent. Increasing the size of the substituent from methyl to mesityl enhances 

the selectivity from a ratio of 1:1 to a ratio of 3:1.However, the endo-exo selectivity of 

the meta adducts is insensitive to the size of the substituent, and does not show any 

preference at all in the Diels-Alder cycloaddition reactions. 

In contrast to the Diels-Alder reaction, the regioselectivity of the o-QDM 

dimerlzatlons cannot be explained by a concerted mechanism. In Scheme 3 the 

Isomeric concerted transition states SO 53 are presented. Clearly, 50 is more 

12 
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60 
Head-to-tail 

58 
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congested than 51. If the o-QDM's dimerize through a concerted pathway, the product 

ratio of 54:55 should be reduced by Increasing the size of the a-substituent, but this is 

opposite to that observed (see Table 10). In fact, when the substituent Is the very large 

ÉerÉ-butyl or mesltyl group, the only (4+21 dlmer produced Is the head-to-head dimer 

54. 

Table 10. Regioselectlvity of the dimerizàtion of «-substituted o-QDM's 9, 10, 11, 
and 12 In dimerizàtion reaction 

Yield of the dimerizàtion product, b 

o-QDM 9 o-QDM 10 o-QDM 11 O-QDM 12 

Dlmer -CHs -C-C3H5 -C(CH3)3 -Mesltyl 

54 67 66 80 53 

55 9 11 

56 19 7 

57 — 

Head-to-head 
[4+4] dlmer 

58 
— 16 20 47 

Suspected 
dlmer 

5 — 

Although the [4+2] dimerizàtion results do not fit those predicted by the 

concerted mechanism, the results are readily rationalized by a stepwise, diradlcal 

mechanism. Of the three possible dlradicals of the stepwise mechanism, 59, 60, and 

61, formation of the head-to-head diradlcal 59 should be favored because steric 

repulsion arising from the a-substituent R should be minimal in the transition state 

leading to diradlcal 59. Thus, on the basis of the stepwise mechanism, dimer 54 
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should be the major [4+21 dimer produced. In fact, head-to-head dimer 54 Is 

predominant In the dimerlzatlon of all four o-QDM's. Moreover, since increasing the 

size of the a-substituent should not significantly affect formation of head-to-head 

diradical 59, but should retard formation of head-to-tail diradical 60 and tail-to-tall 

diradical 61, increasing the size of a-substituent should enhances the contribution of 

the head-to-head diradical pathway. In fact, when R is equal to the methyl or 

cyclopropyl group, small amounts of head-to-tail dimers 55 and 56 can still be 

identified from the dimerlzatlon products, but when R Is as large as the tert-butyl or 

mesityl group, formation of diradicals 60 and 61 are inhibited and therefore only the 

[4+2] dimers 54 were Isolated along with some head-to-head [4+4] dtaers 58. 

The suggestion of diradical formation in o-QDM dimerlzatlon was also reported 

by Ito.^'* When he studied the dimerlzatlon of o-QDM 62, a disproportlo-natlon 

product 63 was isolated as the major product. He proposed diradical intermediate 64 

as the precursor of 63. 

2 

62 64 63 

Comparslon of the rate of dimerlzatlon of o-xylylene (1) and o-QDM 8 reveals 

that the introduction of a methyl substituent at the «-position does not show any 

significant retardation of the dimerlzatlon reaction (see Table 7). This result Is 

consistent with the observation that significant amounts of head-to-tail [4+2] dimers 

28, 29, and 30 are formed. On the other hand. Introduction of a tert-butyl substituent 
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(o-QDM 11) retards the dimerlzation significantly. Since the tert-butyl substituent 

Inhibits formation of the head-to-tall and tall-to-tall dimers 55-57, the dimerlzation 

rate constant of o-QDM 11 should be reduced at least by a statistical factor of four. In 

fact, the dimerlzation rate constant of 11 Is actually reduced by a factor of ten relative 

to that of the parent o-xylylene (1) and a factor of eight relative to that of o-QDM 9. 

This extra retardation arises from a slight increase In the activation enthalpy (see 

Table 6). Because the activation parameters for o-xylylene (1) are very similar to those 

of 9 and 11, we conclude that dimerlzation of the parent o-QDM, o-xylylene (1), also 

proceeds through a diradical mechanism. 

The rate of the Diels-Alder reactions of 9 and 11 are relatively sensitive to the 

size of the «-substituent. The reaction rate constant of 11 is found to be 38 times 

slower than that of 9 (see Table 9). In addition, the sterlc repulsion Increment from 

methyl to t-butyl group increases the reaction activation enthalpy by 2.5 kcal/mol in 

contrast to the small increment of 0.9 kcal/mol in the dimerlzation. These results 

further support the concertedness of the Diels-Alder reactions and Implicate the 

stepwise process In the dimerlzation reactions. 

Table 11. Activation parameters for the Diels-Alder reaction of 9 and 11 

o-QDM koA. M-lS-1 « AH'', kcal mol'l ^ AS'', eu 

9 (2.5±0.1)xl0l 5.4 ±0.2 -34.1 ±0.6 

11 (6.5 ± 0.4) X ICrl 7.9 ± 0.2 -32.7 ± 0.9 
® TTie calculated rate constant for the Diels-Alder reaction at 25 °C. 
^ The ratio of the reglo-lsomers is nearly independent of the temperature 
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It is well known that cycUzation of diradicals is a fast process.^® The lifetime of 

a triplet diradical is in the nanosecond range.Moreover, singlet diradicals are 

expected to cyclize even faster than triplet diradicals.one of the common methods 

to determine diradical cycUzation rate constants is the internal clock technique. In our 

investigation, we employed the cyclopropyl berizyl radical ring opening reaction of 65 

as an internal clock to monitor the cycUzation rate constant of the intermediate.^® 

However, there is no evident for the existence of ring opening products In the 

dlmerizatlon of o-QDM 10. Thermolysis of the [4+2] dimer 31 in 1,4-cyclohexadlene at 

80 OC for 2 h only provides the rearrangement [4+4] dimers 36 and 37 (Scheme 4). No 

k=2.7xl0® s"^ 

65 66 

Scheme 4 

36 and 37 
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ring opening product was Identified by GC/MS analysis. Since the rate constant for 

the cyclopropyl ring opening of 65 to 66 Is measured as 2.7 x 10® s'l, we believed that 

the diradlcal 67 cycllzes with a rate constant larger than 5 x 10^ 

The existence of diradlcal 68 Is evidenced by the trapping experiment at 180 °C 

In thiophenol. When [4+2] dimer 43 was thermolysed In thiophenol at 180. OC, 

diradlcal 68 was trapped by hydrogen abstraction frorh thiophenol and provided the 

reduction product 45 nearly quantitatively. We attribute this observation to the 

68 

reversible formation of diradlcal 68 from 43 and 44, following by trapping of the 

diradlcal by thiophenol. In contrast to the thermolysis at high temperature, 

thermolysis of [4+2] dimer 43 at 80 °C In thiophenol leads to [4+4] dimer 44 

quantitatively. No trapping product is observed in the GC/MS analyses. We attribute 

this observation to the competition between the irreversible [4+4] cycllzation and the 

hydrogen abstraction reaction (Scheme 5). Since the diradlcal cycllzation Is far faster 

than the hydrogen abstraction reaction, the Intermediate collapses to the [4+4] 

product 44 before being trapped by thiophenol. The quenching rate constant for 

benzyl radical with thiophenol Is 3.1x10® M'^s"^ at 25 oc,^^ and therefore we 

estimated the cycllzation rate constant for 68 to 44 to be larger than 9x10® 
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Scheme 5 

80 "C 

2 PhSH 

Slow 

In summary, regloselectivlty studies revealed that the Diels-Alder reaction 

mechanism is consistent with a concerted process while the dimerization mechanism 

of these o-QDM's is consistent with a stepwise mechanism. On the basis of the 

similarity of the activation parameters of the parent o-:!Q^lylene (1) and those of the 

«-substituted o-QDM's, we suggest that o-xylylene (1) also dimerizes through a 

stepwise mechanism. On the basis of a study of the dimer 43 in thiophenol, the 

cyclizatlon rate constant for the diradlcal intermediate 68 is estimated to be larger 

than 9x10® s 1. 
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EXPERIMENTAL SECTION 

General experimental procedures were previously described In detail In 

Section 1. Capillary gas chromatographic analyses for the competitive kinetic 

experiments were performed using HP5890 Series II gas chromatograph equipped with 

a 30m DB-1 capillary column (J & W Scientific) using nitrogen as a carrier gas and a 

flame ionization detector, and HP3396A integrator. The MM-X calculations were 

performed on a Macintosh II CX computer with PC Model program supplied by Serena 

Software. Elemental analyses were performed by Spang Microanalytical Laboratory, 

Eagle Harbour, MI. AcetonitrUe and methyl methacrylate for kinetic experiments, and 

chlorotrimethylsilane for synthesis were distilled before use. Unless otherwise noted 

the chemicals used in our experiments are commercial available. 

Methyl 2-[(trlmethylslIyl)inethyl]benzoate (17). To a solution of dllso-

propylamine (13.2 g, 130 mmol) in THF (100 mL) at -78 °C was slowly added n-butyl-

llthium in hexanes (52 mL, 2.5 M, 130 mmol). The mixture was stirred at low 

temperature for 1 h and a solution of 10.0 g (66.7 mmol) of methyl 2-methylbenzoate 

(16) and 7.5 g (69 mmol) of chlorotrimethylsilane in THF (50 mL) was then added 

dropwlse. After being stirred for half an hour, the reaction mixture was worked up by 

addition of water at low temperature. The quenched reaction mixture was warmed to 

room temperature and extracted with hexanes. The combined extracts was dried over 

anhydrous NagSO^ and concentrated under reduced pressure to give a crude viscous 

oil. Vacuum distillation of the crude oil provided essentially pure a-sllylated ester 17 

(10.5 g, 71 %): bp 131-133 (20 mmHg): IR (neat) 3061, 3204, 2953 (s, C-H), 1722 (s, 

C=0), 1259 (s, Si-CHs) cm-l; [!((.34. ir (neat) 1726 cm"!]; ^H NMR (CDCI3) S -0.05 (s, 

9H), 2.66 (s, 2H), 3.85 (s, 3H), 7.05 (d, J=7.8 Hz, IH), 7.10 (t. J=7.6 Hz, IH), 7.33 (dt, 

JL=1.4 Hz, J2=7.5 HZ, 1H) 7.85 (dd, Ji=1.4 Hz. J2= 7.9 Hz, IH) ^H NMR (CDCI3) 8 
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0.05 (s, 9H), 2.18 (s, 2H) (apparently a typographical error), 3.82 (s, 3H), 6.80-7.75, 

7.68-7.88 (m, 4H)1; MS. m/e (relative Intensity) 222 (M+, 25), 221 (30), 207 (100), 118 

(95), 90 (20), 89 (20), 73 (70): exact mass m/e 221.10017, calcd for CigHiyOSi (M-H) 

221.09978. 

[2-(Trimethylsilyl)meth3rl]benzyl alcohol (18). To a suspension of LIAIH4 

(1.8g, 47 mmol) in diethyl ether (150 mL) àt 0 °C was added dropwise a solution of 

ester 17 (9.3g, 42 mmol) in diethyl ether (20 mL). After addition, the mixture was 

stirred for 8 h at ambient temperature. The mixture was then worked up as usual 

to provide crude alcohol 18. Distillation of the crude product under reduced pressure 

gave pure 18 (5.2 g, 64 %): bp 134-136 °C (14 mmHg); IR (neat) 3335 (broad s, OH), 

2955 (s, C-H), 1248(s, Si-CHa) cm"! 3320 (s, br), 2954 (s), 1249 (s) cm"!]: NMR 

(CDCI3) 8 0.00 (s, 9H), 2.19 (s, 2H). 4.63 (s, 2H). 7.00 (d, J=7.4 Hz, IH), 7.09 (t, J=7.4 Hz, 

IH). 7.17 (t. J=7.4 Hz. IH). 7.32 (d, J=7 Hz, IH) ^H NMR S 0.02 (s. 9H). 2.13 (s, 

2H). 2.40 (br s, IH), 4.45 (s, 2H), 6.77-7.37 (m, 4H)J: MS, m/e (relative intensity) 194 

(M+, 0.1), 105 (10), 104 (100), 91 (3), 75 (18). 73 (26): exact mass m/e 194.11277. calcd 

for CliHisOSl 194.11269. 

2-((Trimethylsilyl)methyl)benzaldehyde (19). To dlchloromethane (P2O5 

dried, 250mL), which was being stirred vigorously and cooled in an ice bath, was added 

15.5 g (155 mmol) of CrOg and 24.4 g (309 mmol) of pyridine. The reaction is 

exothermic and the solution became deep red brown in color. After addition of the 

reagents, the solution was further stirred for 20 mln and a solution of alcohol 18 

(5.0 g, 26 mmol) in CH2CI2 (20 mL) was added in one portion. After 15 mln the 

solution was decanted and worked up as usual. Chromatography of the crude 

product on silica gel with hexanes-ethyl acetate (12:1) as the eluent gave pure aldehyde 

19 (4.4 g, 90 %): bp 73-75 «C (0.8 mmHg): IR (neat). 2955 (s. C-H). 2729 (w, 0=C-H). 



www.manaraa.com

132 

1697 (s. C=0) 1249 (s. SI-CH3) cm"! IR (neat) 2965 (m). 273Ô (w). 1697 (s). 1250 

(m) cm-l]: NMR (CDCI3) 5 -0.03 (s. 9H). 2.68 (s, 2H). 7.07 (d. J=7.7 Hz. IH). 7.23 (t. 

J=7.5 Hz. IH). 7.41 (t. J=7.5 Hz. IH). 7.75 (d. J=7.7 Hz. IH). 10.16 (s. IH). ^H 

NMR 5 -0.05 (s. 9H). 2.67 (s. 2H). 6.87-7.40 (m. 3H). 6.87-7.40 (m. 3H). 10.03 (s, IH)]; 

MS. m/e (relative Intensity) 192 (M+. 40). 177 (60), 73 (100): exact mass m/e 192.09686, 

calcd for Ci iHieOSl 192.09704. 

i\r-(2-((Trlmethylsilyl)methyl)benzylidene))methylamine (20). To a solution 

of aldehyde 19 (4.3 g. 22.4 mmol) in benzene (4 mL) was added a solution of 

methylamine in benzene (5M. 7 mL. 350 mmol). After being stirred for 10 to 15 min, 

the solution became turbid. Azeotropic removal of water from the reaction mixture 

completed the formation of 20. The reaction mixture was then concentrated and 

distilled under reduced pressure to give a diastereomeric mixture of 20 (4.3 g, 93 %); 

bp 85-87 OC (1 mmHg): IR cm'l (neat). 3068. 2953 (s, C-H), 1645 (C=NMe). 1248 (Si-

CH3): IH NMR (CDCI3) 8 -0.03 (s, 9H). 2.37 (s. 2H). 3.507. 3.502 (2s. 3H), 6.98 (broad d. 

J=7.7 Hz, IH). 7.11 (broad t. J=7.5 Hz. IH). 7.24 (broad t. J=7.5 Hz. IH). 7.80 (broad d. 

J=7.8 Hz, IH), 8.493, 8.498 (2s, IH); MS. m/e (relative intensity) 205 (M+, 30), 204 (100), 

190 (98). 132 (15). 73 (72); exact mass m/e 204.12138, 190.10563, calcd for CigHigNSl 

(M-H) 204.12085, CnHigNSI (M-CH3) 190.10521. 

JV-Ia-[o-((Triinethylsilyl)methyl)phenyl)cyclopropylmethylImethylamine 

(21). Cyclopropylllthlum was freshly prepared before use.^° Amine 21 was prepared In 

the following manner. To a solution of Imine 20 (2.5g, 12 mmol) In ether (20 mL) at 

-10 °C was added the freshly prepared ethereal cyclopropylllthlum (20 mL, 24mmol) 

under nitrogen. The reaction mixture was then further stirred for 1 h and quenched 

with water. The crude 21 was first extracted into diethyl ether and then re-extracted 

Into acidic aqueous layer with 5 % HCl solution. Neutralization of the acidic extracts 
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with saturated NaOH solution, extraction of amine 21 from the aqueous layer with 

hexanes, evaporation of the solvent of the extracts and distillation of the crude product 

under vacuum gave colorless amine 21 (1.7g, 56 %): bp 120-123 °C (5 mmHg); IR 

(neat) 3336 (w, N-H), 3067, 2955 (s, C-H), 1248 (s. SI-CH3) cm"!; NMR(CDCl3) 6 0.01 

(s. 9H). 0.20 (m, IH), 0.35 (m, IH), 0.60 (m. IH), 1.14 (m, IH), 1.56 (m, IH). 2.05-2.22 

(ABq, J=14 Hz, 2H). 2.43 (s, 3H). 3.30 (d, J=7.6 Hz. IH), 6.95 (m, IH), 7.07(m, 2H), 7.40 

(m. IH): MS. m/e (relative intensity) 247 (M+. 3) 232 (11). 216 (33). 206 (26). 190 (11). 

188 (9). 143 (14). 142 (15), 84 (12). 73 (100). 59 (9): exact mass m/e 247.17509. calcd for 

Ci5H25SiN 247.17563. 

iV-Ia-[o-((Trimethylsilyl]methyl)phenyl]neopentyl]methylainine (22). To a 

solution of imine 20 (4.2 g, 20.5 mmol) in diethyl ether (40 mL) was added 15.2 mL 

(1.6 M) of t-butyllithium in hexanes at -78 °C. After being stirred for half an hour, the 

reaction mixture was quenched by addition of water and worked up. in the same 

manner as described in the preparation of amine 21, to provide pure amine 22 (4.6 g. 

85 %): bp 108-109 °C (2.6 mmHg): IR (neat) 3064. 2952 (s. C-H). 2790 (m, NC-H), 1479 

(m), 1247 (s, Si-CHs) cm'l: ^H NMR (CDCI3) 5 0.04 (s, 9H), 0.91 (s. 9H). 2.05 (d, J=14.5 

Hz, IH). 2.21 (s. 3H), 2.40 (d. J=14.5 Hz. IH). 3.66 (broad s, IH), 6.99 (m, IH), 7.05 (m, 

2H), 7.32 (m. IH). The NH signal was not observed in the spectrum. However, a broad 

peak at 1.46 ppm which may due to the hydrogen bonded HgO with NH groups was 

observed: MS, m/e 262 (M-H. 0,4) 248 (7). 207 (20). 206 (100). 190 (18), 73 (39): exact 

mass m/e 262.19852, 248.18345, calcd. for CigHgaNSi (M-H) 262,19914, CisHgsNSl. 

(M-CHs) 248,18349. 

[a-Io-((Trimethylsilyl)methyl)phenyl)cyclopropylmethyl]dimethylamlne 

(23). To a solution of 21 (1.4 g, 5.7 mmol) in CH3CN (30mL) containing 2.4 mL 

(28 mmol) quantity of aqueous formaldehyde (37%). was added NaBHsCN (0.58 g, 9,1 
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mmoi). After being stirred for 15 mln, glacial acetic acid was added to keep the solution 

neutral. The mixture was then further stirred for 2 h with the pH value kept around 

seven and then the solvent was evaporated under reduced pressure. The concentrate 

was quenched by 2N KOH and worked up In a usual manner^ ̂  to give crude amine 21. 

Vacuum distillation of the crude amine gave colorless liquid 21 (1.01 g, 68 %): bp 122-

124 °C (5 mmHg): IR (neat) 3072, 2953 (s. C-H), 2818. 2773 (m. NMe2). 1248 (s. SI-CH3) 

cm-l; iH NMR (CDCI3) 8 -0.06 (m, IH). 0.00 (s. 9H). 0.29 (m. IH). 0.36 (m. IH). 0.74 (m. 

IH). 1.22 (m. IH). 2.31 (s. 6H). 2.11. 2.33 (ABq. J=14 Hz. 2H). 2.81 (d. J=9 Hz. IH). 6.97 

(d, J=7.3 Hz. IH). 7.06 (m. 2H). 7.40 (d, J=7.1 Hz, IH); MS. m/e (relative Intensity) 262 

(M+. 10). 246 (4). 220 (24). 216 (18). 188 (5). 143 (10). 142 (11). 129 (6). 98 (13). 73 (100); 

exact mass m/e 261.19103, calcd. for CigHgyNSI (M-H) 261.19128. 

iV-[a-Io-{(TrImethyIsIIyl)methyl)phenylIneopentylIdimethylainlne (24). 

Amine 24 was prepared, in the same manner as described in the preparation of 23, 

from a solution of amine 22 (4.5 g, 17.1 mmol) In CH3CN (30 mL) containing 7.0 mL 

(82 mmol) of aqueous formaldehyde (37 %), and NaBHsCN (1.74 g, 27.7 mmol). to give 

essentially pure 20 as a colorless liquid. (4.15 g, 88%) : bp 108-109 °C (1.3 mmHg): IR 

(neat), 3064, 2954 (s. C-H), 2819, 2775 (m. NMe2). 1250 (s. SI-CH3) cm"!; ^H NMR 

(CDCI3) 50.06 (s. 9H). 1.01 (S. 9H), 2.21 (s, 2H), 2.27 (s, 6H), 3.55 (s, IH). 7.05 (m. 3H). 

7.39 (d. J=6.8 Hz. IH): MS, m/e (relative intensity) 276 (M-H. 0.1). 262 (6). 221 (20). 220 

(100). 73 (28): exact mass m/e 276.21418, 262.19938, calcd for C17H30NSI (M-H) 

276.21475, Ci6H28NSi (M-CH3) 262.19910. 

[a-[o-((trlmethylsilyl)methyl)phenylIcyclopropylmethyl]trimethylammon-

ium iodide (14). To a solution of tertiary amine 23 (0.99 g, 3.8mmoI) in acetonitrile 

(15 mL) was added methyl Iodide (3.2 g, 23 mmol). The mixture was stirred at room 

temperature for 24 h in the dark condition and some white precipiate formed. The 
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completeness of the reaction was confirmed by TLC analysis and the solution was 

filtered inside the fume-hood. Concentrating the filtrate under reduced pressure gave a 

batch of yellowish solid. The yellowish solid was then re-dissolved in anhydrous 

acetone and anything insoluble to the solution was filtered. Hexanes was then added 

to the filtrate and the crude quaternary ammonium salt 14 precipiated. 

Recrystalllzation of the crude solid in a mixture of acetone and hexanes gave 

essentially crystalline product 14 (1.1 g, 72 %): mp 147-152 °C (decomposed): IR, 

(mineral oil). 2961 (s. C-H), 1489 (s). 1248 (s. Si-CHg) cm'l; NMR (CD3CN) S 0.02 (s, 

9H). 0.09 (m. IH). 0.62 (m. IH). 1.04 (m, IH). 1.07 (m. IH), 1.76 (m. IH). 2.19. 2.45 (ABq. 

J=14.3 Hz, 2H), 3.07 (s. 9H). 4.26 (d. J=10.3 Hz. IH). 7.21 (m. 2H). 7.33 (t, J=7.5 Hz, IH), 

7.59 (d, J=8.1 Hz. IH); MS. FAB m/e (relative Intensity) 679 (2 cation + I", 2), 276 

(cation, 33), 217 (100), 73 (64). Anal, calcd for C17H30NSU: C, 50.61; H, 7.50; N, 3.47. 

Found: C, 50.39; H. 7.20; N. 3.64. 

[a-[o-((Trimethylsilyl)methyl)phenylIneopentyl]trimethylammonium 

iodide (16). Ammonium salt was prepared from a solution of tertiary amine 24 (4.1g. 

14.8mmol) in acetonltrile (40 mL) and methyl iodide (12.6 g. 88.7 mmol). In the same 

manner as described in the preparation of 14, to provide pure crystalline product 15 

(3.85 g, 62%); mp 141-143 °C (decomposed); IR (mineral oil), 2959 (s, C-H), 1481 (s), 

1249 (s, Si-CHa) cm-1; ^H NMR (CD3CN) 5 0.11(s. 9H), 1.23 (s, 9H), 2.27, 2.43 (ABq, 

J=15.1Hz, 2H), 3.15 (s, 9H), 4.86 (s. IH). 7.20 (m. IH). 7.31 (m. 2H), 7.59 (d. J=7.9 Hz. 

IH): MS. FAB m/e (relative Intensity) 711 (2 Cation + I". 0.2). 292 (cation. 5), 233 (20), 

159 (30), 73 (100). Anal, calcd for Ci8H34NSiI: C, 51.54; H, 8.17; N, 3.34. Found : C, 

51.56; H, 8.33; N, 3.31. 

a-[o-((TrImethyIsilyl)methyl)phenylJmesityImethanol (26). Mesltyl 

magnesium bromide was freshly prepared by Smith procedure^^ before use. The 
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prepared Grlgnard reagent (20 mL in THF, 10 mmol) was then transferred to a 

solution of aldehyde 19 (1 g, 5.2 mmol) In THF (10 mL) slowly under nitrogen. After 

addition of the reagent, the mixture was kept under reflux for half an hour and then 

cooled in an ice bath. Water was added dropwise to quench any excess Grlgnard 

reagent. The product was extracted hexanes-ethyl acetate. The combined extracts was 

dried over anhydrous Na2S04 and concentrated under reduced pressure. Purification 

of the crude product by silica gel liquid chromatography with hexanes-ethyl acetate 

(8:1) as the eluent provided 1.26 g (78 %) of 21; IR (neat) 3545 (s, OH), 2953 (s, C-H), 

1248 (s, Si-CHs) cm-l; ^H NMR (CDCI3) 5 -0.004 (s, 9H), 1.84 (d, J=5 Hz, IH), 2.12 (d. 

J=16 Hz, IH), 2.22 (s, 6H). 2.26 (d, J=16 Hz, IH), 2.27 (s, 3H), 6.22 (d. J=5 Hz, IH), 6.84 

(s, 2H). 7.00 (m, 2H) 7.13 (m, IH), 7.18(d, J=1.8Hz. IH); MS, m/e (relative intensity) 311 

(M+-1, 0.3), 297 (20), 207 (100). 192 (25), 91 (10), 75 (20), 73 (43); exact mass m/e 

311.18320, 297.16763. calcd. for C20H27OSi (M-H) 311.18312. Ci9H250Si (M-CH3) 

297.16747. 

[a-Io-((Trimethylsilyl)methyl)phenyl]mesitylmethyl] trlchloroacetate (25). 

To a solution of alcohol 26 (0.65 g. 2.1 mmol) in benzene (5 mL) containing pyridine (1 

g. 13 mmol) at 0 °C was added a solution of trichloroacetyl chloride (1.14 g, 6.3 mmol) 

In CH2CI2 (10 mL). The mixture was stirred for half an hour and worked up by 

addition of water. The organic layer was extracted with hexanes. washed with dilute 

HCl solution and brine, dried over anhydrous Na2S04 and concentrated under 

reduced pressure to give product 25 quantitatively: IR (neat) 2956 (s, C-H), 1757 (s, 

C=0). 1248 (s. SI-CH3) cm-l; ^H NMR (CDCI3) S 0.045 (s. 9H). 2.13 (s, 2H), 2.29 (s, 3H), 

2.33 (s, 6H), 6.89 (s, 2H), 7.02 (m, IH), 7.08 (m. 2H). 7.22 (m. IH), 7.37 (s, IH); MS. m/e 

(relative Intensity) 456 (M+. 2). 295 (6). 207 (100). 192 (12). 73 (27); exact mass m/e 

456.08475. calcd for C22H27O2CI3SI 456.08495. 



www.manaraa.com

137 

Dlels-Alder reactions of a-methyl-o-zylylene (9) with methyl methacry-

late. To a solution of methyl methacylate (53 mg, 0.53 mmol) in acetonitrile (ImL) 

containing 53 mg (0.16 mmol) of tetrabutylammonlum fluoride (TBÀF) was added 

dropwise a solution of quaternary ammonium salt precursor 13 ( 20 mg, 0.053 mmol) 

in acetonitrile (2 mL). After addition of the TBAF solution, the mixture was further 

stirred for 15 min and quenched by addition of water. The products were extracted 

with hexanes and analysed by GC-MS. Finally, the extract was concentrated and 

subjected to a silica gel liquid chromatography with hexanes as the eluent and four 

Diels-Alder adducts were isolated from the dimer mixture: GC analysis condition, 

column DBl, temperature program, 80 °C, 5 min, 5°C/min (rate), 200 °C, 30 min. 

Component I ("meta" Isomer): GC retention time (relative intensity) 21.6 min (4.6 %); 

MS, m/e (relative intensity) 218 (M+. 29), 186 (4), 159 (22). 158 (60), 143 (100), 129 (10), 

128 (16), 117 (9). Component 11 ("ortho" isomer): GC retention time (relative intensity) 

22.3 min (34.3 %); MS, m/e 218 (M+. 34), 186 (6), 159 (37), 158 (100), 143 (54), 129 (14). 

128 (17). 118 (40), 117 (35). Component 111 ("ortho" isomer): GC retention time (relative 

Intensity) 22.5 min (38.8 %) MS, m/e (relative intensity) 218 (M+, 43), 186 (11), 159 (35), 

158 (100), 143 (55), 129 (14). 128 (17). 118 (61). 117 (49). Component IV ("meta" 

isomer): GC retention time (relative intensity) 22.6 min (3.7 %); MS. m/e (relative 

intensity) 218 (M+, 42), 159 (41). 158 (87). 143 (100), 129 (11), 128 (22). 118 (8). 117 (27). 

NMR analyses of the Diels-Alder adducts: The structural assignment of the 

components are based on the results of the spin-spin decoupling experiment results of 

the adduct mixture. The quartet at 3.35 ppm coupled to the major doublet at 1.17 ppm 

and the quartet at 2.95 ppm coupled to another major doublet at 1.10 ppm suggest 

that the major two components indeed possess the "ortho" structures which have an 

benzyllc proton only coupled to a methyl substituent. On the basis of this observation, 
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we assign component II and III as the "ortho" adducts and component I and IV as the 

"meta" adducts. 

Diels-AIder reactions of a-cyclopropyl-o-zylylene (10) with methyl 

methacrylate. The Dlels-Alder adducts of 10 was prepared from a solution of 

methyl methacrylate (107 mg. 1.24 mmol) in acetonitrile (2 mL) containing a 117 mg 

(0.4 mmol) quantity of TBAF and a solution of quaternary ammonium salt presursor 

14 (50 mg, 0.12 mmol) in acetonitrile (4 mL) in the same manner as described 

previously. The products were by GC-MS and separated through a silica gel liquid 

chromatography with hexanes as the eluent. A mixture of the major two Diels-Alder 

regio-isomers were isolated from the minor isomers and identified as the "ortho" 

adducts by NMR spectroscopy: GC analysis condition, column DB 1. temperature 

program 120 °C. 5 min. 5°C/min (rate), 200 °C, 20 min. Component I ("meta" isomer): 

GC retention time (relative intensity) 14.14 (6.2 %); MS, m/e (relative intensity), 244 

(M+. 1). 216 (4). 185 (27). 184 (33). 169 (27). 158 (12). 157 (100). 156 (24). 155 (12). 143 

(35). 142 (16). 141 (23). 129 (19). 128 (39). 115 (16). 91 (8). Compoment II ("ortho" 

Isomer): GC retention time (relative intensity) 14.59 min (26.3 %); MS. m/e (relative 

Intensity) 244 (M+, 11), 229 (10), 216 (3), 186 (12), 185 (73), 184 (52), 169 (18), 158 (6), 

157 (353), 156 (21), 155 (14), 144 (41). 143 (79), 142 (22). 141 (27). 130 (12). 129 (100). 

128 (61). 127 (16), 117 (12), 116 (32). 115 (37). 19 (16). Component III ("ortho" Isomer): 

GC retention time (relative intensity) 14.76 min (25.0 %); MS. m/e (relative Intensity) 

244 (M+.n). 229 (8). 216 (3). 186 (6), 185 (39), 184 (44). 169 (11). 158(2). 157 (15). 156 

(8). 155 (11). 144 (43). 143 (100). 142 (17). 141 (21). 130 (11). 129 (86). 128 (50). 127 (16). 

117 (8). 116 (20), 115 (28), 101 (16), 91 (11). Component IV ("meta" iosomer): GC 

retention time (relative Intensity): 15.03 min (5.7 %): MS. m/e (relative Intensity) 244 

(M+. 11). 186 (7). 185 (43). 184 (20). 169 (25). 158 (4). 157 (32). 156 (14). 155 (13). 144 
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(19). 143 (100), 142 (20). 141 (25). 130 (9). 129 (30). 128 (41). 127 (10). 115 (21). 91 (10). 

NMR analyses of the Dlels-Alder adducts: The structural assignments of the 

components are based on the spin-spin decoupled spectrum for a mixture of the major 

two isomers. The doublet at 2.49 ppm and at 2.17 ppm coupled to the multiplets of the 

cyclopropyl ring protons at 0.8 ppm comflrm the "ortho" structure for these two major 

regio-isomers. 

Diels-Alder reactions of a-terC-butyl-o-zylylene (II) with methyl meth-

acrylate. The Diels-Alder adducts of 11 was prepared from a solution of methyl 

methaciylate (470 mg. 5.5 mmol) in acetonitrUe (10 ml) containing 470 mg (1.5 mmol) 

of TBAF and a solution of quaternary ammonium salt precursor 15 (200 mg, 0.48 

mmol) in acetonitrile (10 ml) in the same manner as described. previously. The 

products were analysed by GC-MS and subjected to a silica gel liquid chromatography 

with hexanes-benzene (4:1) as the eluent and all four regio-isomers were separated and 

identified by NMR spectroscopy respectively: GC analysis conditions, column DBl, 

temperature program 120 °C, 5 mln, 10°C/min (rate), 200 °C. 20 mln. Component I 

("meta" isomer): GC retention time (relative intensity) 13.07 min (4.3 %): MS, m/e 

(relative intensity) 260 (M+, 2), 204 (9), 203 (23), 144 (27), 143 (100). 129 (15). 128 (20), 

115 (7), 57 (21). Since the compound was mixed with 20 % of other isomers and could 

not be isolated in pure form, exact mass experiment has not been performed.: NMR 

(CDCI3) 5 0.88 (s. 9H). 1.33 (s. 3H). 2.44-2.57(m. 3H). 2.87-2.93 (m. 2H). 3.29 (s. 3H), 

6.96-7.35 (m, 4H). Component II ("ortho" Isomer): GC retention time (relative 

intensity) 13.82 mln (13.2 %): MS, m/e (relative intensity) 260 (M+, 1), 245 (0.7), 204 

(23), 172 (7), 144 (50), 143 (100). 129 (25). 128 (23). 115 (10). 57 (56). 41 (24): exact mass 

m/e 260.17785. calcd for C17H24O2 260.17763: NMR (CDCI3) S 1.01 (s. 9H). 1.44 (s. 

3H). 1.92-2.08 (m. IH). 2.34-2.44 (m. IH). 2.84-2.99 (m, 2H). 3.01 (d. J=1.9 Hz. IH), 3.28 
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(s, 3H), 6.95-7.10 (m, 4H). The characteristic spin-spin coupling among four protons 

having chemical shifts at 1.97-2.08, 2.34-2.44, 2.84-2:99 ppm and a single proton 

having a doublet with a small coupling constant (long range coupling) at 3.01 ppm 

match the "ortho" structural assignment for this component. Component III ("meta" 

isomer) GC retention time (relative intensity) 14.20 min (4.2 %); MS, m/e (relative 

intensity) 260 (M+. 0.1), 245 (0.2). 204 (23), 172 (9), 144 (59). 143 (100). 129 (23). 128 

(23). 115 (8). 57 (36). 41 (17); exact mass m/e 260.17800. calcd for C17H24O2 

260.17763: iH NMR (CDCI3) 5 0.85 (s. 3H). 0.90 (s. 9H). 1.94 (ddd. Ji=2.8 Hz. J2=9.6 Hz. 

J3=14.2 HZ. IH). 2.06 (dd. JI=7.1 Hz. J2=14.8 Hz. IH). 2.57 (dd. Ji=2.8 Hz. J2=14.8 Hz, 

IH). 2.76 (dd, Ji=7.3 Hz, J.2=9.5 Hz. IH). 3.01 (d. J=14.7 Hz. IH). 3.75 (s. 3H). 7.03-8.20 

(m. 4H). The characteristic AB pattern appearing at 2.57 and 3.01 ppm. and the spin-

spin coupling among three protons at 1.94. 2.06. 2.76 ppm suggest the "meta" 

structure for this component. Component IV ("ortho" Isomer): GC retention time 

(relative intensity) 14.38 min (6.2 %); MS. m/e (relative intensity) 245 (M+-15. 1). 204 

(27). 172 (150). 145 (22). 144 (100). 143 (68). 129 (36). 128 (23). 115 (9). 57 (42). 41 (25); 

exact mass m/e 245.15458. calcd for Cie H21O2 (M-CH3) 245.15415; ^H NMR (CDCI3) 

5 0.84 (s. 9H). 0.94 (s. 3H). 1.91 (m. IH). 2.43 (m. IH). 2.81 (dd. Ji=18.5 Hz. J2=9.2 Hz, 

IH). 2.93 (d, J=1.9 Hz, IH). 3.00 (dd. Ji=10.8 Hz. J2= 19.4 Hz. IH). 3.71 (s. 3H). 7.02-

7.15 (m. 4H). The ^H NMR spectrum with four coupled multiplets at 1.91. 2.43. 2.81. 

3.00 ppm and one doublet with a small coupling constant at 2.93 ppm are consistent 

with the "ortho" structural assignment. 

Diels-Alder reactions of a-mesityl-o-xylylene (12) with methyl meth-

acrylate. To a solution of methyl methaciylate (5 g. 50 mmol) in acetonitrlle (60 mL) 

containing TBAF (90 mg. 0.29 mmol) was added dropwise a mixture of trlchloroacetate 

25 (45 mg. 0.1 mmol) and methyl methacrylate (5 g. 50 mmol) in acetonitrlle (50 mL). 
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After addition, the solution was further stirred for 15 mln and quenched by addition of 

water. The products were extracted with hexanes and analysed by GC-MS. Flnallly, 

the solvent was removed under reduced pressure and subjected to a sUlca gel liquid 

chromatography with hexenes-benzene (4:1) as the eluent. The Dlels-AIder adducts 

were separated and identified respectively: GC analysis conditions, column DBl, 

temperature program 120 °C, 5 mln, 10 °C/mln (rate), 220 °C, 20 mln. Component I 

("meta" Isomer): GC retention time (relative intensity) 22.21 mln (4.4 %); MS, m/e 

(relative intensity) 332 (M+, 40), 262 (77), 247 (100), 220 (17), 143 (14), 133 (14), 128 (14): 

iH NMR (CDCI3) 5 1.35 (s, 3H), 1.70 (s, 3H), 1.79 (dd, Ji=12.6 Hz, J2=13.2 Hz, IH), 2.25 

(s, 3H), 2.39 (m, IH), 2.41 (s, 3H), 2.73 (d, J=16.3 Hz, IH), 3.37 (dd, Ji=2.7 Hz. J2=16.3 

Hz, IH). 3.64 (s, 3H). 4.63 (dd, Ji=6.2 Hz. J2=12;5 Hz. IH), 6.7-7.1 (m, 6H). The typical 

AB quartet at 2.73 and 3.37 ppm supports the "meta" structural assignment. 

Component II ("ortho" Isomer); GC retention time (relative Intensity) 22.4 mln (10.7 %); 

MS. m/e (relative intensity) 332 (M+. 18). 262 (49), 248 (32), 233 (15), 220 (11), 207 

(100), 202 (45), 192 (47). 143 (81). 129 (24). 128 (20): ^H NMR analyses. Since the 

component II could not be separated In pure form, the ^H NMR spectrum could not be 

obtained. However, the characteristic benzyllc singlet at 4.56 ppm strongly suggests 

the "ortho" structure for this reglo-lsomer. Component III ("ortho" isomer): GC 

retention time (relative Intensity) 23.60 mln (38.0 %): MS, m/e (relative intensity) 322 

(M+, 16), 275 (10), 263 (24), 262 (98), 247 (12), 207 (100), 202 (25). 192 (37), 143 (65). 128 

(16): ^H NMR (CDCI3) S 1.11 (s. 3H). 1.70 (s, 3H), 1.98 (m, IH), 2.24 (s. 3H), 2.33 (m. IH). 

2.44 (s. 3H), 2.85 (m. 2H). 3.67 (s. 3H). 5.40 (s. IH). 6.65-7.15 (m. 6H). The characteristic 

benzyllc singlet at 5.40 ppm strongly supports the "ortho" structure for this reglo-

lsomer. Component IV ("meta" isomer): GC retention time (relative intensity) 24.91 

mln (4.6 %): MS. m/e (relative intensity) 322 (M+- 12). 247 (39). 207 (10), 202 (30), 192 



www.manaraa.com

142 

(11). 143 (100). 128 (11): NMR (CDCI3) 5 1.32 (s. 3H). 1.69 (s. 3H). 2.03 (ddd. Ji=2.6 

• Hz. J2=6.8 HZ. J3=13 HZ. IH). 2.17 (dd. Ji=12.4 Hz. J2=13.5 Hz. IH), 2.25 (s. 3H). 2.42 

(s. 3H). 2.83 (dd, Ji=2.5 Hz. J2=16.3 Hz. IH). 3.19 (d. J=16.1 Hz). 3.70 (s. 3H). 4.60 (dd. 

Jl=7 Hz. J2=12.4 Hz. IH). 6.6-7.1 (m. 6H). The AB pattern at 2.83 and 3.29 ppm 

supports the "meta" structural assignment for this regio-lsomer. 

General procedures for dlmerlzations of a-substituted o-xylylenes. To a 

solution of a-substituted o-xylylene precursor (-200 mg) in acetonitrlle (10 mL) was 

added a solution of TBAF (600 mg) in acetonitrlle (10 mL). After addition of the TBAF 

solution, the reaction mixture was further stirred for 15 min and worked up with 

addition of water. The mixture was extracted with hexanes, dried over anhydrous 

Na2S04 and concentrated under reduced pressure. Before the crude dimers were 

subjected to a slhca gel liquid chromatography, a ^H NMR spectrum was collected. 

Since the [4+2] dimer might be unstable on silica gel and rearrange to give rise to 

other products, the NMR spectrum of the mixture was used as a standard to 

Identifly whether the Isolated products was Included in the original dimer mixture or 

not. Finally, the dimers were Isolated through silica gel liquid chromatography with 

hexanes as the eluent. 

Dlmerlzatlon products of a-methyl-o-xylylene (9). [4+2] Dimer 27 (yield 

66.9 %): iH NMR {CDCI3) 8 1.07 (d. J=7.1 Hz. 3H). 1.68-1.75 (d. J=7 Hz, 3H: dd, IH. The 

absorption of the methyl group overlap with that of a doublet of doublet) 1.93-2.03 (m, 

IH), 2.78 (q, J=7.1 Hz, IH), 2.83-3.-90 (m, 2H), 5.18 (q, J=7 Hz, IH), 5.85-5.95 (m. 3H), 

6.42 (d, J=9.5 Hz, IH), 7.03-7.32 (m, 4H). Two characteristic quartets at 2.78 and 5.18 

ppm support the structure assignment for 27. Decoupling experiments show that four 

protons at 1.68-1.75, 1.93-2.03 and 2.82-3.00 ppm are coupled with each others. This 

kind of coupling pattern further supports the assignment for 27. Mass spectrum could 
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not be obtained successfully since the dlmer polymerizes quickly when It Is 

concentrated. Moreover, this dlmer Is thermally unstable and decomposed under GC 

conditions. [4+2] Dimer 28 (yield 9 %); NMR (CDCla) S 0.93 (d. J=6.7 Hz, 3H), 

1.07 (d, J=7.2 Hz, 3H), 2.18-2.26 (m, IH), 2.61-2.72 (m, 2H). 2.99 (dd, Ji=6.3 Hz, J2=17.3 

Hz, IH), 4.78 (s, IH), 5.31 (s, IH), 5.78 (d, J=9.8 Hz, IH), 5.84 (dd, Ji=5.9 Hz, J2=9.4 Hz. 

IH), 5.95 (dd, Ji=5.8 Hz, J2=9.5 Hz, IH). 6.12 (d, J=9.3 Hz, IH), 7.02-7.31 (m, 4H). The 

characteristic singlets for gem-vinyl protons at 4.78 and 5.31 ppm support the 

structure of 28. Moreover, decoupling experiments showed that the multiplets of two 

protons at 2.61-2.72 ppm collasped to one singlet and one doublet of doublet when the 

methyl protons at 1.07 ppm were Irradiated. It Implys the existence of a single proton 

which is coupled with the methyl group at 1.07 ppm only. This Information further 

comfirms the structural assignment: MS, m/e (relative Intensity) 236,(M+, 28), 221 

(40), 207 (100), 192 (28), 179 (30), 178 (26), 165 (9), 129 (15), 119 (64), 118 (43), 117 (60). 

115 (24). 105 (11). 91 (28). exact mass m/e 236.15615. calcd for C18H20 236.15650. 

14+2] Dlmer 29 (yield 10 %): ^H NMR (CDCI3) 5 0.87 (d, J=6.6 Hz. 3H), 1.18 (d, J=6.9 

Hz. 3H). 1.88 (m. IH), 2.73-2.84 (m, 3H). 5.03 (s, IH), 5.28 (s, IH), 5.50 (d, J=9.7 Hz, IH). 

5.71 (dd. Ji=5.0 Hz. J2=9.2 Hz. IH), 6.11 (dd, Ji=5.5 Hz, J2=10.1 Hz, IH), 6.24 (d, J=9.4 

Hz, IH), 7.06-7.31 (m, 4H). The characteristic singlets at 5.03 and 5.28 ppm are 

assigned as the gem-vinyl protons of the dimer 29. Irradiation at 1.18 ppm led to a 

singlet along with multiplets at 2.73-2.83 ppm. This observation suggests the existence 

of a single proton coupled with the methyl group at 1.18 ppm only. These ^H NMR 

patterns confirm the structural assignment of 29. MS, m/e (relative intensity) 236 

(M+, 40), 221 (48), 207 (100), 193 (22). 192 (33). 179 (32). 178 (29). 165 (13). 129 (20). 119 

(96), 118 (59). 117 (89). 115 (38). 105 (17). 91 (40). 81 (17), 69 (54); exact mass, m/e, 

236.15592, calcd for CigHgo 236.15650. [4+2] Dlmer 30 (yield 9 %); ^H NMR 
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(CDCls) S 1.28-1.34 (m. 4H). 1.79 (d. J=7.0 Hz, 3H). 2.12 (ddd, Ji=2.4 Hz, J2=6.0 Hz, J3 = 

13.0 Hz, IH), 2.74 (dd, Ji=2.4 Hz, J2=16.0 Hz, IH), 2.90 (d, J=16.0 Hz, IH), 3.08 (m, IH), 

5.56 (q, J=7.2 Hz, IH), 5.78-5.93 (m, 3H). 6.50 (d, J=9.0 Hz, IH), 7.03 (d, J=7.3 Hz, IH), 

7.11 (t, J=7.5 Hz, IH). 7.18 (t, J=7.7 Hz, IH), 7.31 (d, J=7.7 Hz. IH). The characteristic 

AB pattern at 2.74 and 2.90 ppm and the vinyl quartet at 5.56 ppm support the 

structural assignment of 30; MS. m/e (relatively intensity) 263 (M+. 50). 291 (48). 207 

(100). 193 (33). 192 (25). 179 (35). 178 (33). 165 (12). 145 (10). 129 (20). 119 (72), 118 (51), 

117 (69). 115 (31), 105 (15). 91 (35). exact mass m/e 236.15629. calcd for C18H20 

236.15650. 

Dlmerization products of a-cyclopropyl-o-xylylene (10). [4+2] dimer 31 

(yield 53 %); ^H NMR (CDCI3) 5 0.08-0.18 (m. IH). 0.20-0.35 (m. 2H). 0.38-0.51 (m. 2H), 

0.70-0.90 (m. 4H), 1.65-1.80 (m, 2H), 2.00 (d. J=9.4 Hz. IH). 2.21-2.16 (m. IH). 2.86-3.01 

(m. 2H). 4.60 (d. J=9.4 Hz. IH). 5.84-5.91 (m. 3H). 6.60-6.68 (m. IH). 7.05-7.20 (m, 4H). 

The characteristic ben^lic doublet at 2.00 ppm and the vinyl doublet at 4.60 ppm 

support the structural assignment of 31. 14+2] Dimer 32 (yield 13 %): ^H NMR 

(CDCI3) S 0.21-0.35 (m, 3H). 0.38-0.58 (m. 2H). 0.68-0.89 (m. 4H). 1.71-1.91 (m. 4H). 

2.68-3.08 (m, 2H), 4.72 (d, J=9.3 Hz, IH), 5.61 (d, J=9.7 Hz, IH), 5.81 (m. IH). 5.94 (dd. 

Jl=5.9 Hz, J2=9.7 Hz. IH). 6.68 (d. J=9.5 Hz. IH). 7.06-7.18 (m. 3H). 7.80 (d. J=6.3 Hz. 

IH). The vinyl doublet at 4.72 ppm and the benzylic doublet which overlaps with other 

multiplets support the assignment. In addition, the assignment was also further 

confirmed by the results of the flash vacuum pyrolysls experiments which is described 

later. [4+2] Dimer 33 (yield 11%); ^H NMR ( CDCI3) 5 0.12-0.21 (m, IH), 0.23-0.58 (m, 

4H). 0.72-0.90 (m. 4H). 1.39-1.48 (t. J=12 Hz. IH). 1.68-1.81 (m. IH). 2.05-2.22 (m. 2H), 

2.72, 2.83 (ABq, J=16 Hz, 2H). 4.80 (d, J=9.5Hz, IH), 5.73 (d. J=9.2 Hz, IH). 5.72-5.83 

(m. 2H). 6.66 (d. J=8.5 Hz. IH). 7.04 (d. J=6.8 Hz. IH). 7.10-7.22 (m. 2H). 7.77 (d. J=7.6 



www.manaraa.com

145 

Hz, IH). The characteristic doublet at 4.80 ppm and the AB quartet at 2.78 ppm 

support the structural assignment of 33. [4+2] Dimers 34 and 35 (yield 3 and 4 % 

respectively): A mixture of dimers 34 and 35 was isolated from other isomers on silica 

gel liquid chromatography. On the basis of the NMR spectrum of the mixture, the 

structure of the dimers were suggested as 30 and 31. Their structural assignments 

are based on (a) the gem-vinyl singlets at 4.90 & 5.18 ppm emd 4.36 & 5.01 ppm; (b) 

benzylic doublet at 1.93 and 2.17 ppm. Moreover, the pyrolysis results also support the 

assignments since it gives two head-to-tail [4+4] dimers as the major products in flash 

vacuum pyrolysis. Head-to-head [4+4] dimer 36: NMR (CDCI3) S -0.1-1.4 (m, 10 

H); 2.1-2.3 (m, IH), 2.7-3.1 (m, 3H), 3.2-3.7 (m, 2H), 6.5-7.3 (m, 8H): MS, m/e. (relative 

intensity) 288 (M+' 37), 273 (2), 260 (7), 259 (6), 245 (8). 231 (8), 217 (14), 205 (9), 183 

(12), 169 (18), 158 (19), 143 (86), 129 (92), 128 (100), 117 (48),. 115 (62), 105 (23), 91 (46). 

Head-to-head [4+4] dimer 37: ^H NMR (CDCI3) S Signais of the cyclopropyl ring 

protons cannot be seen clearly since the solution was too dilute and their signals are 

covered by the proton signals of the hydroncarbon residues from the chromatography 

solvents, 2.4-2.5 (m, 2H), 2.9-3.0 (m, 4H), 7.0-7.3 (m, 8H); MS, m/e (relative intensity) 

288 (M+, 30), 273 (2), 260 (7), 259 (6), 245 (7), 231 (7), 217 (14), 202 (8), 183 (11). 169 (17). 

158 (18), 157 (17). 143 (82), 129 (93), 128 (100), 117 (45), 115 (64), 105 (23), 91 (45). 

Flash vacuum pyrolyses of dimers 31-35. Dimers 31-35 were pyrolysed at 

540-550 °C under 10'® ton*. The pyrolysates were analysed by GC-MS and the results 

are summarized in Table 12. 
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Table 12. GC°-MS analyses for the flash vacuum pyrolyses of dimers 31-35 

Precursor^ 

Dimer 
Head-to-head 

[4+4] 36C 

Products 
Head-to-tail Head-to head 
[4+4] 38d [4+4] 37^ 

Head-to-tal 
[4+4] 39f 

31 83 >0.5 16 >1 

32 45 2 . 53 — 

33 10 23 10 57 

34 &35 8 51 3 38 
° GC Conditions: Column DBl, temperature program 120 °C, 5 min, 10 °C/min 

(rate) 200 °C, 35min. 
^ Purity of the dimer is higher than 80%. 

Retention time is 26.0 min. 
Retention time is 27.0 min. 

® Retention time is 28.6 min. 
f Retention time is 30.8 min. 

Dlmerlzation products of a-tert-butyl-o-xylylene (11). The [4+2] dimer 

40 was separated from the [4+4] dimers 41 and 42 through a AgNOa treated silica gel 

column. (1) [4+2] dimer 40 (yield 80 %): NMR (CDCI3) S 0.89 (s, 9H). 1.19 (s, 9H). 

1.78-1.87 (m. IH). 2.65-2.75 (m. IH). 2.87 (d. J=1.8 Hz. IH). 2.93-3.05 (m. IH). 3.14-3.21 

(m. IH). 5.49 (d. J=9.4 Hz. IH). 5.54 (s. IH). 5.56-5.60 (m. IH). 5.84-5.90 (m. IH), 6.67 (d. 

J=9.7 Hz. IH). 6.90 (d. J=7.5 Hz. IH). 6.95-7.03 (m. IH). 7.05-7.14 (m. 2H). The 

characteristic benzylic doublet with a small coupling constant (long range coupling) at 

2.87 ppm and singlet at 5.54 ppm support the structural assigment of 40. Head-to-

head [4+4] dimer 41 (yield 8 %): ^H NMR (CDCI3) 5 0.74 (s. 9H). 1.03 (s. 9H). 2.87-3.17 

(m. 4H). 3.28-3.37 (m. IH). 3.52 (s. IH). 7.04-7.17 (m. 7H). 7.70-7.73 (m. IH); MS. m/e 

(relative intensity) 320 (M+.34). 277 (53). 264 (11). 263 (12). 221 (14). 193 (100). 159 (67). 

117 (30). 91 (17). 57 (36); exact mass, m/e 320.25032. calcd for C24H32 320.25040. 

Thermally unstable head-to-head [4+4] dimer 42 (yield 12 %): ^H NMR (CDCI3) 5 

1.21 (s. 18H). 2.83-3.12 (AA'BB'. 4H). 3.24 (s. 2H). 7.05-7.15 (m. 4H). 7.20-7.25 (m, 2H). 



www.manaraa.com

147 

7.69-7.74 (m, 2H). Thermally stable head-to-head [4+4] dimer 42 (< 2 %): NMR 

(CDCI3) 50.82 (s, 18H). 2.81-2.88 and 3.27-3.30 (AA'BB", 4H), 3.32 (s. 2H). 7.04-7.19 (m. 

8H): MS. m/e (relative intensity) 320 (57). 277 (82), 264 (18). 263 (13). 221 ( 26). 193 (22), 

159 (100), 117 (48), 91 (22), 57 (39); exact mass, m/e, 320.25062 calcd for C24H32 

320.25040. 

Dimerlzation products of a-mesltyl-o-xylylene (12). [4+2] Dimer 43 

(yield 53 %): NMR (CDCI3) 8 1.70 (s. 3H). 1.86 (dd. Ji=5 Hz. J2=13 Hz, IH), 2.06 (s, 

3H), 2.09 (s, 3H), 2.24 (2, 3H), 2.26 (s, 3H), 2.35 (s. 3H). 2.80 (dd. Ji=4 Hz, J2=17 Hz, IH). 

3.27-3.42 (m, 2H). 4.87 (s. IH), 5.33 (d, J= 9.3 Hz. IH), 5.65-5.80 (m, 3H), 6.09 (s, IH). 

6.73 (s, IH), 6.80 (s, 2H), 6.84 (d. J=7 Hz. IH). 6.88 (s, IH), 6.79 (t. J= 7Hz. IH). 7.05 (t. 

J= 7 Hz, IH), 7.12 (d, J=7 Hz, IH). Head-to-head [4+4] dimer 44 (yield 47 %): ^H NMR 

(CDCI3) S 1.50-2.00 (broad s, 12 H), 2.20 (s, 6H), 3.32-3:74 (AA'BB', 4H), 5.89 (s, 2H), 

6.62 (s, 4H), 6.82 (d, J=7 Hz, 2H). 6.92 (t. J=7 Hz, 2H), 7.05 (t, J=7 Hz. 2H). 7.15 (d, J=7 

Hz, 2H): MS, m/e (relative intensity) 444 (M+, 15), 429 (5), 324 (9). 309 (23). 233 (61). 

221 (27). 207 (100). 204 (36). 192 (11); exact mass m/e 444.28141. calcd for C34H36 

444.28170. 

Thermolysis of dimer 43 in thiophenol. A 20 mg quantity of 43 in thiophenol 

(3 mL) was thermolysed at 180 °C under a seal tube condition for 2h. After 

thermolysis, the solution was cooled down to room temperature and 2N NaOH 

solution was added. The mixture was extracted with hexanes and the extract was 

washed with two 30-mL portions of 2N NaOH solution and one 30 mL portion of 

NaHC03 solutionts. dried over anhydrous Na2S04, concentrated under reduced 

pressure and subjected to silica gel liquid chromatography with benzene-hexanes (1:3) 

as the eluent. The first fraction Isolated from the column is dlphenyl disulfide and the 

second fraction is the reduction product 45. Product 45 cannot be visualized on a TLC 
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plate by a normal UV visualization process. By use of an aqueous formaldehyde 

solution with H2SO4, product 45 can be thermally decomposed and stained as a very 

faint spot on a silica gel TLC plate. However, the product can be detected effectively by 

GC analysis: ^H NMR (CDCI3) 8 2.21 (s, 12H), 2.23 (s. 6H), 3.14 (s. 4H). 3.97 (s, 4H), 6.53 

(d, J=7 Hz, 2H), 6.89 (s, 4H), 7.01 (t, J=7 Hz, 2H). 7.14 (t, J=7 Hz, 2H), 7.24 (d, J=7 Hz, 

2H); MS, m/e (relative intensity) 446 (M+, 55), 326 (33), 223 (100), 206 (76), 193 (48), 178 

(18), 143 (13), 133 (22), 120 (13); exact mass m/e 446.29665, calcd for C34H38 

446.29735. 

Determination of Xmas for a-ter£-butyl-o-3cylyIene (11). A 2-cm path-

length UV-visible cell was charged with 3 mL of CH3CN and 0.1 mL of a 0.1 M TBAF 

solution. To this was rapidly added 1.0 mL of 10"^ M quaternary ammonium salt 15 in 

CH3CN and 11 was generated. The cell was shaken once and placed in the optical path 

of a Perkin-Elmer 7000 Lambda-Array UV-Visible Spectrophotometer. Spectra were 

recorded every 0.03 min in the spectral range 200-450 nm. From a plot of absorbances 

versus wavelengths, the A,max was determined. Determination of the À^ax values for 1 

and 9 was reported by Macius. 

Determination of emaz and dimerization rate constants for 9 and 11. 

The emax for 9 and 11 were measured by a Canterbury SF 3A Stopped-Flow 

UV-VisIble Spectrophotometer. Several runs were carried out In which the optimum 

fluoride ion concentration was kept constant but the concentration of the quaternary 

ammonium salt precursor was varied. The rapid injection of TBAF and precursor 

solutions into the mixing chamber of stopped-flow UV-visible spectrophotometer 

generated o-QDM's rapidly. The generation and decay of o-QDM's were monitored by 

UV-visIble spectrometer. In each experiment, we obtained a maximum absorbance for 

the o-QDM intermediate followed by a second order decay. Assuming that the 
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quaternary ammonium salt precursor was converted quaritltatively to the 

corresponding o-QDM before much of o-QDM intermediate had dimerized, we obtained 

the initial concentration of o-QDM. By use of the Beer's law, the Emax for o-QDM was 

obtained from the linear plot of the maximum absorbances against the initial 

concentrations of o-QDM intermediate. The extinction coefficients emax for 9 and 11 

are reported in Table 12. By use of the determined extinction coefficients of 9 and 11, 

the dimerizatlon rate constants of the o-QDM's were evaluated from the second order 

decay curves obtained from the stopped-flow experiments. Temperature dependent 

experiments were performed with a stopped-flow mixing cell Immersed in a thermal 

static water bath. 

General procedures for the competitive kinetic experiments. Five fast 

mixing cells, a series of five solutions containing quaternary ammonium salt 

precursor (1 x lO'^M), diphenylmethane (4 x 10"'^ M) and various amount of methyl 

methacrylate (3 to 16 x lO'^M for oQDM 9 and 1 to 5 x 10"! M for o-QDM 11) in 

acetonitrile (solution A) and a 0.2 M TBAF solution in acetonitrile (solution B) were 

prepared. To each of the fast mixing cells were charged a 0.4 mL of solution A and a 0.4 

mL of TBAF solution (solution B) respectively. The cells were capped by a ground-glass 

stopper, sealed with parafin film, attached to the cell holder and immersed into a 

constant temperature water bath for half an hour until the solution temperature was 

equilibrated with the bath temperature. The cells were then flipped twice inside the 

water bath and the solutions A and B were mixed and reacted inside the cells for 15 

min. After the reactions were complete, the reaction mixtures were diluted with a 1 mL 

quantity of CHgClg respectively. The diluted mixtures were then subjected to silica gel 

short columns and the unreacted TBAF was removed. The filtrates were subjected to 

GC analyses and the yield percentage of the Diels-Alder adducts and dimerizatlon 
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products were delermined. In these experiments, diphenylmethane Is employed as an 

GC Internal standard to calibrate the yield percentage of the DIels-Alder adducts. 

Although the dlmers will be decomposed under the GC conditions, the total yield 

percentage can be determined from the yield percentage of the DIels-Alder adducts. On 

the basis of the non-linear curve fitting technique, the rate constant ratio for the 

dimerizatlon to the DIels-Alder reaction was determined. The same procedures were 

repeated at several different temperatures between 0 °C and 50 °C and the activation 

parameters were determined. The kinetic studies were performed twice for each system. 
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Table A-1. Absorbance values for various concentration of [9] 

Absorbance of [9] 

[9], M Trial 1 Trial 2 Trial 3 Trial 4 Average 

0 0 0 0 0 0 

1.775E-04 0.1364 0.1361 0.1326 0.1254 0.1326 

3.829E-04 0.2574 0.2606 0.2612 0.2592 0.2596 

6.850E-04 0.4592 0.4578 0.4589 0.4599 0.4590 
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Table A-2. Kinetic data for a-methyl-o-xylylene (9) dimerizatlon measured at 
15.50 °C in CH3CN 

Time, s Absorbance [91. M [91-l.M-l 

0.05 0.2845 4.28E-04 2.33E+03 

0.10 0.2564 3.86E-04 2.59E+03 

0.15 0.2322 3.50E-04 2.86E+03 

0.20 0.2103 3.17E-04 3.16E+03 

0.25 0.1909 2.88E-04 3.48E+03 

0.30 0.1752 2.64E-04 3.79E+03 

0.35 0.1611 2.43E-04 4.12E+03 

0.40 0.1491 2.25E-04 4.45E+03 

0.45 0.1380 2.08E-04 4.81E+03 

0.50 0.1288 1.94E-04 5.16E+03 

0.55 0.1211 1.82E-04 5.48E+03 

0.60 0.1139 1.72E-04 5.83E+03 

0.65 0.1077 1.62E-04 6.17E+03 

0.70 0.1016 1.53E-04 6.54E+03 

0.75 0.0960 1.45E-04 6.92E+03 

0.80 0.0920 1.39E-04 7.22E+03 

0.85 0.0876 1.32E-04 7.58E+03 

0.90 0.0841 1.27E-04 7.90E+03 

0.95 0.0798 1.20E-04 8.32E+03 

1.00 0.0772 1.16E-04 8.60E+03 
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Table A 3. Kinetic data for a-methyl-o-xylylene (9) dlmerlzatlon measured at 
15.50 oc In CH3CN 

Time, s Absorbance [91. M (91-l.M-l 

0.05 0.2823 4.25E-04 2.35E+03 

0.10 0.2550 3.84E-04 2.60E+03 

0.15 0.2299 3.46E-04 2.89E+03 

0.20 0.2082 3.14E-04 3.19E+03 

0.25 0.1895 2.85E-04 3.50E+03 

0.30 0.1739 2.62E-04 3.82E+03 

0.35 0.1598 2.41E-04 4.16E+03 

0.40 0.1475 2.22E-04 4.50E+03 

0.45 0.1360 2.05E-04 4.88E+03 

0.50 0.1282 1.93E-04 5.18E+03 

0.55 0.1197 1.80E-04 5.55E+03 

0.60 0.1122 1.69E-04 5.92E+03 

0.65 0.1068 1.61E-04 6.22E+03 

0.70 0.1007 1.52E-04 6.59E+03 

0.75 0.0951 1.43E-04 6.98E+03 

0.80 0.0907 1.37E-04 7.32E+03 

0.85 0.0868 1.31E-04 7.65E+03 

0.90 0.0829 1.25E-04 8.01E+03 

0.95 0.0798 1.20E-04 8.32E+03 

1.00 0.0768 1.16E-04 8.65E+03 
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Table A-4. Kinetic data for a-methyl-o-xylylene (9) dimerlzation measured at 
15.50 oc in CH3CN 

Time, s Absorbance [9). M [91. M 

0.05 0.2817 4.24E-04 2.36E+03 

0.10 0.2533 3.81E-04 2.62E+03 

0.15 0.2288 3.45E-04 2.90E+03 

0.20 0.2072 3.12E-04 3.20E+03 

0.25 0.1890 2.85E-04 3.51E+03 

0.30 0.1726 2.60E-04 3.85E+03 

0.35 0,1585 2.39E-04 4.19E+03 

0.40 0.1472 2.22E-04 4.51E+03 

0.45 0.1357 2.04E-04 4.89E+03 

0.50 0.1270 1.91E-04 5.23E+03 

0.55 0.1194 1.80E-04 5.56E+03 

0.60 0.1123 1.69E-04 5.91E+03 

0.65 0.1057 1.59E-04 6.28E+03 

0.70 0.0997 1.50E-04 6.66E+03 

0.75 0.0953 1.44E-04 6.97E+03 

0.80 0.0905 I.36E-04 7.34E+03 

0.85 0.0858 1.29E-04 7.74E+03 

0.90 0.0823 1.24E-04 8.07E+03 

0.95 0.0789 1.19E-04 8.42E+03 

LOO g^754 1.14E-04 8.81E+03 
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Table A S. Kinetic data for a-methyl-o-xylylene (9) dimerlzatlon measured at 
23.80 oc In ÇH3CN 

Time, s Absorbance [91. M [91-1,M-1 

0.05 0.2993 4.51E-04 2.22E+03 

0.10 0.2570 3.87E-04 2.58E+03 

0.15 0.2223 3.35E-04 2.99E+03 

0.20 0.1957 2.95E-04 3.39E+03 

0.25 0.1740 2.62E-Ô4 3.82E+03 

0.30 0.1573 2.37E-04 4.22E+03 

0.35 0.1439 2.17E-04 4.61E+03 

0.40 0.1313 1.98E-04 5.06E+03 

0.45 0.1213 1.83E-04 5.47E+03 

0.50 0.1129 1.70E-04 5.88E+03 

0.55 0.1047 1.58E-04 6.34E+03 

0.60 0.0990 1.49E-04 6.71E+03 

0.65 0.0935 1.41E-04 7.10E+03 

0.70 0.0883 1.33E-04 7.52E+03 

0,75 0.0836 1.26E-04 7.94E+03 

0.80 0.0789 1.19E-04 8.42E+03 

0.85 0.0752 1.13E-04 8.83E+03 
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Table A-6. Kinetic data for a-methyl-o-xylylene (9) dlmerizatlon measured at 
23.80 °C in CH3CN 

Time, s Absorbance [91, M 

0.05 0.2988 4.50E-04 2.22E+03 

0.10 0.2551 3.84E-04 2.60E+03 

0.15 0.2209 3.33E-04 3.01E+03 

0.20 0.1945 2.93E-04 3.41E+03 

0.25 0.1736 2.61E-04 3.82E+03 

0.30 0.1566 2.36E-04 4.24E+03 

0.35 0.1420 2.14E-04 4.68E+03 

0.40 0.1306 1.97E-04 5.08E+03 

0.45 0.1210 1.82E-04 5.49E+03 

0.50 0.1122 1.69E-04 5.92E+03 

0.55 0.1047 1.58E^04 6.34E+03 

0.60 0.0988 1.49E-04 6.72E+03 

0.65 0.0929 1.40E-04 7.15E+03 

0.70 0.0874 1.32E-04 7.60E+03 

0.75 0.0837 1.26E-04 7.93E+03 

0.80 0.0793 1.19E-04 8.37E+03 

0.85 0.0750 1.13E-04 8.85E+03 
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Table A-7. Kinetic data for a-methyl-o-^qrlylene (9) dlmerizatlon measured at 
23.80 OC In CH3CN 

Time, s Absorbance [91. M [91.M 

0.05 0.3055 4.60E-04 2.17E+03 

0.10 0.2612 3.93E-04 2.54E+03 

0.15 0.2256 3.40E-04 2.94E+03 

0.20 0.1989 3.00E-04 3.34E+03 

0.25 0.1770 2.67E-04 3.75E+03 

0.30 0.1594 2.40E-04 4.17E+03 

0.35 0.1448 2.18E-04 4.59E+03 

0.40 0.1318 1.98E-04 5.04E+03 

0.45 0.1228 1.85E-04 5.41E+03 

0.50 0.1140 1.72E-04 5.82E+03 

0.55 0.1054 1.59E-04 6.30E+03 

0.60 0.0991 1.49E-04 6.70E+03 

0.65 0.0939 1.41E-04 7.07E+03 

0.70 0.0887 1.34E-04 7.49E+03 

0.75 0.0837 1.26E-04 7.93E+03 

0.80 0.0793 1.19E-04 8.37E+03 

0.85 0.0760 1.14E-04 8.74E+03 
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Table A-8. Kinetic data for a-methyl-o-xylylene (9) dlmerlzatlon measured at 
30.40 oc In CH3CN 

Time, s Absorbance 191. M [91-l.M-l 

0.050 0.3075 4.63E-04 2.16E+03 

0.075 0.2785 4.19E-04 2.38E+03 

0.100 0.2541 3.83E-04 2.61E+03 

0.125 0.2330 3.51E-04 2.85E+03 

0.150 0.2158 3.25E-04 3.08E+03 

0.175 0.1989 3.00E-04 3.34E+03 

0.200 0.1862 2.80E-04 3.57E+03 

0.225 0.1743 2.63E-04 3.81E+03 

0.250 0.1654 2.49E-04 4.01E+03 

0.275 0.1554 2.34E-04 4.27E+03 

0.300 0.1482 2.23E-04 4.48E+03 

0.325 0.1406 2.12E-04 4.72E+03 

0.350 0.1332 2.01E-04 4.98E+03 

0.375 0.1267 1.91E-04 5.24E+03 

0.400 0.1215 1.83E-04 5.47E+03 

0.425 0.1175 1.77E-04 5.65E+03 

0.450 0.1124 1.69E-04 5.91E+03 

0.475 0.1081 1.63E-04 6.14E+03 

0.500 0.1043 1.57E-04 6.37E+03 

0.525 0.1005 1.51E-04 6.61E+03 

0.550 0.0975 1.47E-04 6.81E+03 
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Table A-8. Continued 

Time, s Absorbance [91. M Ol-l.M-l 

0.575 0.0937 1.41E-04 7.09E+03 

0.600 0.0904 1.36E-04 7.35E+03 

0.625 0.0878 1.32E-04 7.56E+03 

0.650 0.0852 1.28E-04 7.79E+03 

0.675 0.0827 1.25E-04 8.03E+03 
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Table A-9. Kinetic data for a-methyl-Orxylylene (9) dirnerizatlon measured at 
30.40 OC in CH3CN 

Time, s Absorbance [91. M [91-l.M-l 

0.050 0.3108 4.68E-04 2.14E+03 

0.075 0.2800 4.22E-04 2.37E+03 

0.100 0.2550 3.84E-04 2.60E+03 

0.125 0.2339 3.52E-04 2.84E+03 

0.150 0,2158 3.25E-04 3.08E+03 

0.175 0.2003 3.02E-04 3.32E+03 

0.200 0.1867 2.81E-04 3.56E+03 

0.225 0.1744 2.63E-04 3.81E+03 

0.250 0.1647 2.48E-04 4.03E+03 

0.275 0.1547 2.33E-04 4.29E+03 

0.300 0.1471 2.22E-04 4.51E+03 

0.325 0.1400 2.11E-04 4.74E+03 

0.350 0.1338 2.02E-04 4.96E+03 

0.375 0.1269 1.91E-04 5.23E+03 

0.400 0.1213 1.83E-04 5.47E+03 

0.425 0.1162 1.75E-04 5.71E+03 

0.450 0.1123 1.69E-04 5.91E+03 

0.475 0.1073 1.62E-04 6.19E+03 

0.500 0.1038 1.56E-04 6.40E+03 

0.525 0.1000 1.51E-04 6.64E+03 

0.550 0.0963 1.45E-04 6.90E+03 
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Table A-9 , Continued 

Time, s Absorbance 191. M [91-l.M-l 

0.575 0.0925 1.39E-04 7.18E+03 

0.600 0.0907 1.37E-04 7.32E+03 

0.625 0.0,874 1.32E.04 7.60E+03 

0.650 0.0841 1.27E-04 7.90E+03 

0.675 0.0823 1.24E-04 8.07E+03 
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Table A-10. Kinetic data for a-methyl-o-xylylene (9) dlmerlzation measured at 
30.40 oc in CH3CN 

Time, s Absorbance 191. M [91-l.M-l 

0.050 0.3038 4.58E-04 2.19E+03 

0.075 0.2759 4.16E-04 2.41E+03 

0.100 0.2519 3.79E-04 2.64E+03 

0.125 0.2311 3.48E-04 2.87E+03 

0.150 0.2128 3.20E-04 3.12E+03 

0.175 0.1980 2.98E-04 3.35E+03 

0.200 0.1845 2.78E-04 3.60E+03 

0.225 0.1733 2.61E-04 3.83E+03 

0.250 0.1632 2.46E-04 4.07E+03 

0.275 0.1538 2.32E-04 4.32E+03 

0.300 0.1462 2.20E-04 4.54E.+03 

0.325 0.1388 2.09E-04 4.78E+03 

0.350 0.1319 1.99E-04 5.03E+03 

0.375 0.1258 1.89E-04 5.28E+03 

0.400 0.1207 1.82E-04 5.50E+03 

0.425 0.1164 1.75E-04 5.70E+03 

0.450 0.1110 1.67E-04 5.98E+03 

0.475 0.1072 1.61E-04 6.19E+03 

0.500 0.1022 1.54E-04 6.50E+03 

0.525 0.0992 1.49E-04 6.69E+03 

0.550 0.0951 1.43E-04 6.98E+03 
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Table A-10. Continued 

Time, s Absorbance [S], M [Sl-l.M-l 

0.575 0.0933 1.41E-04 7.12E+03 

0.600 0.0896 1.35E-04 7.41E+03 

0.625 0.0874 1.32E-04 7.60E+03 

0.650 0.0834 1.26E-04 7.96E+03 

0.675 0.0820 1.23E-04 8.10E+03 
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Table A ll. Kinetic data for a-methyl-o-xylylene (9) dlmerlzatlon measured at 
38.40 OC In CH3CN 

Time, s Absorbance [91, M [91-l.M-l 

0.050 0.3277 4.94E-04 2.03E+03 

0.075 0.2899 4.37E-04 2.29E+03 

0.100 0.2583 3.89E-04 2.57E+03 

0.125 0.2337 3.52E-04 2.84E+03 

0.150 0.2131 3.21E-04 3.12E+03 

0.175 0.1949 2.94E-04 3.41E+03 

0.200 0.1808 2.72E-04 3.67E+03 

0.225 0.1676 2.52E-04 3.96E+03 

0.250 0.1564 2.36E-04 4.25E+03 

0.275 0.1463 2.20E-04 4.54E+03 

0.300 0.1392 2.10E-04 4.77E+03 

0.325 0.1314 1.98E-04 5.05E+03 

0.350 0.1237 1.86E-04 5.37E+03 

0.375 0.1177 1.77E-04 5.64E+03 

0.400 0.1114 1.68E-04 5.96E+03 

0.425 0.1066 1.61E-04 6.23E+03 

0.450 0.1026 1.55E-04 6.47E+03 

0.475 0.0983 1.48E-04 6.75E+03 

0.500 0.0944 1.42E-04 7.03E+03 

0.525 0.0908 1.37E-04 7.31E+03 

0.550 0.0873 1.31E-04 7.61E+03 
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Table A-11. Continued 

Time, s Absorbance [91. M (91-l.M-l 

0.575 0.0849 1.28E-04 7.82E+03 

0.600 0.0818 1.23E-04 8.12E+03 

0.625 0.0784 1.18E-04 8.47E+03 

0.650 0.0760 1.14E-04 8.74E+03 

0.675 0.0736 l.llE-04 9.02E+03 
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Table A-12. Kinetic data for a-methyl-o-xylylene (9) dlmerlzatlon measured at 
38.40 oc In CH3CN 

Time, s Absorbance [91. M [9I-1.M-1 

0.050 0.3247 4.89E-04 2.04E+03 

0.075 0.2871 4.32E-04 2.31E+03 

0.100 0.2556 3.85E-04 2.60E+03 

0.125 0.2316 3.49E-04 2.87E+03 

0.150 0.2115 3.19E-04 3.14E+03 

0.175 0.1942 2.92E-04 3.42E+03 

0.200 0.1792 2.70E-04 3.71E+03 

0.225 0.1673 2.52E-04 3.97E+03 

0.250 0.1561 2.35E-04 4.25E+03 

0.275 0.1472 2.22E-04 4.51E+03 

0.300 0.1384 2.08E-04 4.80E+03 

0.325 0.1318 1.98E-04 5.04E+03 

0.350 0.1237 1.86E-04 5.37E+03 

0.375 0.1177 1.77E-04 5.64E+03 

0.400 0.1121 1.69E-04 5.92E+03 

0.425 0.1077 1.62E-04 6.17E+03 

0.450 0.1022 1.54E-04 6.50E+03 

0.475 0.0990 1.49E-04 6.71E+03 

0.500 0.0947 1.43E-04 7.01E+03 

0.525 0.0911 1.37E-04 7.29E+03 

0.550 0.0876 1.32E-04 7.58E+03 
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Table A-12. Continued 

Time, s Absorbance 191. M 

0.575 0.0845 1.27E.04 7.86E+03 

0.600 0.0814 1.23E-04 8.16E+03 

0.625 0.0789 1.19E-04 8.42E+03 

0.650 0.0759 1.14E-04 8.75E+03 

0.675 0.0742 1.12E-04 8.95E+03 
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Table A-13. Kinetic data for a-methyl-o-:qrIyIene (9) dimerlzation measured at 
38.40 OC in CH3CN 

Time, s Absorbeince 191. M [91-l.M-l 

0.050 0.3327 5.01E-04 2.00E+03 

0.075 0.2922 4.40E-04 2.27E+03 

0.100 0.2609 3.93E-04 2.55E+03 

0.125 0.2342 3.53E-04 2.84E+03 

0.150 0.2150 3.24E-04 3.09E+03 

0.175 0.1962 2.95E-04 3.38E+03 

0.200 0.1808 2.72E-04 3.67E+03 

0.225 0.1692 2.55E-04 3.92E+03 

0.250 0.1580 2.38E-04 4.20E+03 

0.275 0.1474 2.22E-04 4.50E+03 

0.300 0.1399 2.11E-04 4.75E+03 

0.325 0.1317 1.98E-04 5.04E+03 

0.350 0.1251 1.88E-04 5.3iE+03 

0.375 0.1183 1.78E-04 5.61E+03 

0.400 0.1135 1.71E-04 5.85E+03 

0.425 0.1076 1.62E-04 6.17E+03 

0.450 0.1036 1.56E-04 6.41E+03 

0.475 0.0982 1.48E-04 6.76E+03 

0.500 0.0950 1.43E-04 6.99E+03 

0.525 0.0914 1.38E-04 7.26E+03 

0.550 0.0886 1.33E-04 7.49E+03 
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Table A-13. Continued 

Time, s Absorbance [91. M I91-1.M-1 

0.575 0.0851 1.28E-04 7.80E+03 

0.600 0.0820 1.23E-04 8.10E+03 

0.625 0.0796 1.20E-04 8.34E+03 

0.650 0.0772 1.16E-04 8.60E+03 

0.675 0.0741 1.12E-04 8.96E+03 
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Table A-14. Kinetic data for a-methyl-o-xylylene (9) dlmerlzatlon measured at 
45.60 °C in CH3CN 

Time, s Absorbance [91. M I9I-1.M-1 

0.050 0.3423 5.16E-04 1.94E+03 

0.075 0.2956 4.45E-04 2.25E+03 

0.100 0.2585 3.89E-04 2.57E+03 

0.125 0.2303 3.47E-04 2.88E+03 

0.150 0.2070 3.12E-04 3.21E+03 

0.175 0.1882 2.83E-04 3.53E+03 

0.200 0,1731 2.61E-04 , 3.84E+03 

0.225 0.1593 2.40E-04 4.17E+03 

0.250 0.1475 2.22E-04 • 4.50E+03 

0.275 0.1379 2.08E-04 4.82E+03 

0.300 0.1292 1.95E-04 5.14E+03 

0.325 0.1215 1.83E-04 5.47E+03 

0.350 0.1149 1.73E-04 5.78E+03 

0.375 0.1082 1.63E-04 6.14E+03 

0.400 0.1029 1.55E-04 6.45E+03 

0.425 0.0983 1.48E-04 6.75E+03 

0.450 0.0921 1.39E-04 7.21E+03 

0.475 0.0897 1.35E-04 7.40E+03 

0.500 0.0843 1.27E-04 7.88E+03 

0.525 0.0813 1.22E-04 8.17E+03 

0.550 0.0777 1.17E-04 8.55E+03 
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Table A-15. Kinetic data for a-methyl-o-xylylene (9) dimerlzation measured at 
45.60 oc in CH3CN 

Time, s Absorbance 19], M (91-l.M-l 

0.050 0.3465 5.22E-04 1.92E+03 

0.075 0.2972 4.48E-04 2.23E+03 

0.100 0.2615 3.94E-04 2.54E+03 

0.125 0.2322 3.50E-04 2.86E+03 

0.150 0.2088 3.14E-04 3.18E+03 

0.175 0.1900 2.86E-04 3.49E+03 

0.200 0.1744 2.63E-04 3.81E+03 

0.225 0.1602 2.41E-04 4.14E+03 

0.250 0.1488 2.24E-04 4.46E+03 

0.275 0.1387 2.09E-04 4.79E+03 

0.300 0.1305 1.97E-04 5.09E+03 

0.325 0.1220 1.84E-04 5.44E+03 

0.350 0.1151 1.73E-04 5.77E+03 

0.375 0.1097 1.65E-04 6.05E+03 

0.400 0.1037 1.56E-04 6.40E+03 

0.425 0.0981 1.48E-04 6.77E+03 

0.450 0.0936 1.41E-04 7.09E+03 

0.475 0.0895 1.35E-04 7.42E+03 

0.500 0.0861 1.30E-04 7.71E+03 

0.525 0.0821 1.24E-04 8.09E+03 

0.550 0.0798 1.20E-04 8.32E+03 
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Table A-16. Kinetic data for'a-methyl-o-xylylene (9) dimerlzatlon measured at 
45.60 oc In CH3CN 

Time, s Absorbance [91. M [9r^,M'^ 

0.050 0.3397 5.12E-04 1.95E+03 

0.075 0.2929 4.41E-04 2.27E+03 

0.100 0.2566 3.86E-04 2.59E+03 

0.125 0.2272 3.42E-04 2.92E+03 

0.150 0.2059 3.10E-04 3.22E+03 

0.175 0.1864 2.81E-04 3.56E+03 

0.200 0.1710 2.58E-04 3.88E+03 

0.225 0.1574 2.37E-04 4.22E+03 

0.250 0.1468 2.21E-04 4.52E+03 

0.275 0.1365 2.06E-04 4.86E+03 

0.300 0.1279 1.93E-04 5.19E+03 

0.325 0.1209 1.82E-04 5.49E+03 

0.350 0.1141 1.72E-04 5.82E+03 

0.375 0.1080 1.63E-04 6.15E+03 

0.400 0.1020 1.54E-04 6.51E+03 

0.425 0.0968 1.46E-04 6.86E+03 

0.450 0.0927 1.40E-04 7.16E+03 

0.475 0.0890 1.34E-04 7.46E+03 

0.500 0.0846 1.27E-04 7.85E+03 

0.525 0.0813 1.22E-04 8.17E+03 

0.550 0.0776 1.17E-04 8.56E+03 
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Table A-17. Rate constants for the dlmerlzatlon of 9 at various temperatures 

Dlmerlzatlon rate constant k2 for 9 , M-ls-1 

Temperature, °C Trial 1 Trial2 Trial 3 Average 

15.5 6784 6731 6875 6797+73 

23.8 8262 8252 8295 8270+23. 

30.4 9418 9500 9536 9485+60 

38.4 11208 11036 11082 11109+89 

45.6 13014 12902 12875 12930+73 
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Table B-1. Absorbance values for various concentration of [11] 

[71. M Trial 1 

Absorbance of [7] 

Trial 2 Average 

0 0.000 0.000 0.000 « 

3.31E-04 0.283 0.281 0.282 a 

4.01E-04 0.336 0.341 0.339 a 

5.75E-04 0.456 0.453 0.454 b 

7.10E-04 0.539 0.535 0.537 b 
^ The extinction coefficient Is determined from these data 
^ Since the rate for the generation of o-QDM 11 at higher precursor concentration 

is. slower, the maximum absorbance of 11 at these concentrations deviate from the 
Beer's law. Therefore, these data are Ignored in the determination of the extinction 
coefficient of 11. 
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Table B-2. Kinetic data for a-fert-butyl-o-xylylene (11) dlmerizatlon 
measured at 14.75 °C In CH3CN 

Time, s Absorbance [111. M im-i'M-i 

0.00 0.3936 4.65E-04 . 2.15E+03 

1.00 0.2931 3.46E-04 2.89E+03 

2.00 0.2325 2.75E-04 3.64E+03 

3.00 0.1916 2.26E-04 4.42E+03 

4.00 0.1632 1.93E-04 5.19E+03 

5.00 0.1421 1.68E-04 5.96E+03 

6.00 0.1258 1.49E-04 6.73E+03 

7.00 0.1127 1.33E-04 7.51E+03 

8.00 0.1024 1.21E-04 8.27E+03 

9.00 0.0928 l.lOE-04 9.13E+03 

10.00 • 0.0861 1.02E-04 9.84E+03 

11.00 0.0795 9.39E-05 1.07E+04 

12.00 0.0744 8.79E-05 1.14E+04 

13.00 0.0690 8.15E-05 1.23E+04 

14.00 0.0641 7.57E-05 1.32E+04 

15.00 0.0611 7.22E-05 1.39E+04 

16.00 0.0575 6.79E-05 1.47E+04 
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Table B-3. Kinetic data for a-ÉerÉ butyl-ocqrlylene (11) dlmerization 
measured at 14.75 °C In CH3CN 

Times, S Absorbance [111. M (111-1, M-1 

0.00 0.3880 4.58E-04 2.18E+03 

1.00 0.2908 3.43E-04 2.91E+03 

2.00 0.2308 2.73E-04 3.67E+03 

3.00 0.1900 2.24E-04 4.46E+03 

4.00 0.1630 1.92E-04 5.20E+03 

5.00 0.1418 1.67E-04 5.97E+03 

6.00 0.1263 1.49E-04 6.70E+03 

7.00 0.1123 1.33E-04 7.54E+03 

8.00 0.1021 1.21E-04 8,29E+03 

9.00 0.0928 l.lOE-04 9.13E+03 

10.00 0.0861 1.02E-04 9.84E+03 

11.00 0.0788 9.31E-05 1.07E+04 

12.00 0.0741 8.75E-05 1.14E+04 

13.00 0.0697 8.23E-05 1.21E+04 

14.00 0.0650 7.68E-05 1.30E+04 

15.00 0.0607 7.17E-05 1.40E+04 

16.00 0.0578 6.83E-05 1.47E+04 
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Table B-4. Kinetic data for a-tert-butyl-o-xylylene (11) dimerlzation 
measured at 14.75 °C in CH3CN 

Time, s Absorbance [111. M [111-1, M-1 

0.00 0.3903 4.61E-04 2.17E+03 

1.00 0.2911 3.44E-04 2.91E+03 

2.00 0.2308 2.73E-04 3.67E+03 

3.00 0.1892 2.23E-04 4.48E+03 

4.00 0.1618 1.91E-04 5.23E+03 

5.00 0.1408 1.66E-04 6.01E+03 

6.00 0.1238 1.46E-04 6.84E+03 

7.00 0.1121 1.32E-04 7.55E+03 

8.00 0.1012 1.20E-04 8.37E+03 

9.00 0.0912 1.08E-04 9.29E+03 

10.00 0.0839 9.91E-05 l.OlE+04 

11.00 0.0781 9.22E-05 1.08E+04 

12.00 0.0723 8.54E-05 1.17E+04 

13.00 0.0683 8.07E-05 1.24E+04 

14.00 0.0636 7.51E-05 1.33E+04 

15.00 0.0603 7.12E-05 1.40E+04 

16.00 0.0561 6.62E-05 1.51E+04 
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Table B-5. Kinetic data for a-fert-butyl-o-xylylene (11) dimerizatlon 
measured at 23.85 °C in CH3CN 

Time, s Absorbance un. M [111-1, M-1 

0.00 0.3917 4.63E-04 2.16E+03 

1.00 0.2718 3.21E-04 3.12E+03 

2.00 0.2060 2.43E-04 4.11E+03 

3.00 0.1664 1.97E-04 5.09E+03 

4.00 0.1392 1.64E-04 6.08E+03 

5.00 0.1194 1.41E-04 7.09E+03 

6.00 0.1036 1.22E-04 8.17E+03 

7.00 0.0925 1.09E-04 9.15E+03 

8.00 0.0830 9.80E-05 1.02E+04 

9.00 0.0753 8.89E-05 1.12E+04 

10.00 . 0.0691 8.16E-05 1.23E+04 

11.00 0.0630 7.44E-05 1.34E+04 

12.00 0.0585 6.91E-05 1.45E+04 
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Table B-6. Kinetic data for a-tert-butyl-o-xylylene (11) dimerlzatlon 
measured at 23.85 °C In CH3CN 

Time, s Absorbance [111. M [111-1, M-1 

0.00 0.3924 4.63E-04 2.16E+03 

1.00 0.2701 3.19E-04 3.14E+03 

2.00 0.2062 2.44E-04 4.11E+03 

3.00 0.1658 1.96E-04 5.11E+03 

4.00 0.1389 1.64E-04 6.10E+03 

5.00 0.1202 1.42E-04 7.04E+03 

6.00 0.1048 1.24E-04 8.08E+03 

7,00 0.0929 l.lOE-04 9.12E+03 

8.00 0.0834 9.85E-05 1.02E+04 

9.00 0.0747 8.82E-05 1.13E+04 

10.00 0.0678 8.01E-05 1.25E+04 

11.00 0.0623 7.36E-05 1.36E+04 

12.00 0.0585 6.91E-05 1.45E+04 
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Table B-7. Kinetic dâta for a-fert-butyl-o-xylylene (11) dimerlzation 
measured at 23.85 °C In CH3CN 

Time, s Absorbance [111. M [llI-l.M-1 

0.00 0.3920 4.63E-04 2.16E+03 

1.00 0.2722 3.21E-04 3.11E+03 

. 2.00 0.2052 2.42E-04 4.13E+03 

. 3.00 0.1667 1.97E-04 5.08E+03 

4.00 0.1390 1.64E-04 6.09E+03 

5.00 0.1192 1.41E-04 7.10E+03 

6.00 0.1047 1.24E-04 8.09E+03 

7.00 0.0925 1.09E-04 9.15E+03 

8.00 0.0833 9.84E-05 1.02E+04 

9.00 0.0753 8.89E-05 1.12E+04 

10.00 0.0690 8.15E-05 1.23E+04 

11.00 0.0635 7.50E-05 1.33E+04 • 

12.00 0.0581 6.86E-05 1.46E+04 
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Table B-8. Kinetic data for a-fert-butyl-o-xylylene (11) dimerlzatlon 
measured at 29.65 °C in CH3CN 

Time, s Absorbance [111, M . [111-1, M-1 

0.00 0.4054 4.79E-04 2;09E+03 

0.80 0.2838 3.35E-04 2.98E+03 

1.60 0.2187 2.58E-04 3.87E+03 

2.40 0.1781 2.10E-04 4.75E+03 

3.20 0.1500 1.77E-04 5.65E+03 

4.00 0.1278 1.51E-04 6.63E+03 

4.80 0.1125 1.33E-04 7.53E+03 

5.60 0.1002 1.18E-04 8.45E+03 

6.40 0.0900 1.06E-04 9.41E+03 

7.20 0.0828 9.78E-05 1.02E+04 

8.00 0.0749 8.85E-05 1.13E+04 

8.80 0.0689 8.14E-05 1.23E+04 

9.60 0.0640 7.56E-05 1.32E+04 

10.40 0.0594 7.01E-05 1.43E+04 
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Table B-9. Kinetic data for a-tert-butyl-o-xylylene (11) dimerlzatlon 
measured at 29.65 °C In CH3CN 

Time, s Absorbance [HI. M [111-1, M-1 

0.00 0.4129 4.88E-04 2.05E+03 

0.80 0.2904 3.43E-04 2.92E+03 

1.60 0.2215 2.62E-04 3.82E+03 

2.40 0.1802 2.13E-04 4.70E+03 

3.20 0.1511 1.78E-04 5.60E+03 

4.00 0.1296 1.53E-04 6.53E+03 

4.80 0.1131 1.34E-04 7.49E+03 

5.60 0.1005 1.19E-04 8.43E+03 

6.40 0.0902 1.07E-04 9.39E+03 

7.20 0.0819 9.67E-05 1.03E+04 

8.00 0.0748 8.83E-05 1.13E+04 

8.80 0.0698 8.24E-05 1.21E+04 

9.60 0.0642 7.58E-05 1.32E+04 

10.40 0.0596 7.04E-05 1.42E+04 
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Table B-10. Kinetic data for a-fert-butyl-o-xylylene (11) dlmerlzation 
measured at 29.65 °C In CH3CN 

Time, s Absorbance . [11], M [111-1'M-l 

0.00 0.4006 4.73E-04 2.11E+03 

0.80 0.2826 3.34E-04 3.00E+03 

1.60 0.2175 2.57E-04 3.89E+03 

2.40 0.1760 2.08E-04 4.81E+03 

3.20 0.1488 1.76E-04 5.69E+03 

4.00 0.1273 1.50E-04 6.65E+03 

4.80 0.1117 1.32E-04 7.58E+03 

5.60 0.0997 1.18E-04 8.49E+03 

6.40 0.0895 1.06E-04 9.46E+03 

7.20 0.0819 9.67E-05 1.03E+04 

8.00 0.0747 8.82E-05 1..13E+04 

8.80 0.0690 8.15E-05 1.23E+04 

9.60 0.0647 7.64E-05 1.31E+04 

10.40 0.0602 7.11E-05 1.41E+04 
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Table B-11. Kinetic data for a-(ert-butyl-o :qrlylene (H) dimerlzatlon 
measured at 37.10 °C In CH3CN 

Time, s Absorbance [11). M (11]-1. M-1 

0.00 0.4010 4.74E-04 2.11E+03 

0.80 0.2669 3.16E-04 3.17E+03 

1.60 0.2003 2.36E-04 4.23E+03 

2.40 0.1589 1.88E-04 5.32E+03 

3.20 . 0.1323 1.57E-04 6.39E+03 

4.00 0.1122 1.32E-04 7.55E+03 

4.80 0.0940 1.16E-04 8:61E+03 

,5.60 0.0845 9.81E-05 1.02E+04 

6.40 0.0758 8.68E-05 , 1.15E+04 

7.20 0.0683 7.99E-05 1.25E+04 

8.00 0.0622 7.35E-05 1.36E+04 
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Table B-12. Kinetic data for a-fert-butyl-o-xylylene (11) dlmerlzatlon 
measured at 37.10 °C In CH3CN 

Time, s . Absorbance [111. M [111-1, M-1 

0.00 0.4010 4.74E-04 2.11E+03 

0.80 0.2669 3.15E-04 3.17E+03 

1.60 0.2003 2.37E-04 4.22E+03 

2.40 0.1589 1.88E-04 5.32E+03 

3.20 0.1323 1.56E-04 6.39E+03 

4.00 0.1122 1.33E-04 7.54E+03 

4.80 0.0940 l.llE-04 9.00E+03 

5.60 0.0845 9.99E-05 l.OOE+04 

6.40 0.0758 8.96E-05 1.12E+04 

7.20 0.0683 8.07E^05 1.24E+04 

8.00 0.0622 7.35E-05 1.36E+04 
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Table B-13. Kinetic data for a-tert-butyl-o-xylylene (11) dimerlzatlon 
measured at 37.10 °C in CH3CN 

Time, s Absorbance fill. M [11-1, M-1 

0.00 0.3976 4.70E-04 2.13E+03 

0.80 0.2656 3.14E-04 3.19E-I-03 

1.60 0.1989 2.35E-04 4.26E+03 

2.40 0.1584 1.87E-04 5.35E+03 

3.20 0.1313 1.55E-04 6.45E+03 

4.00 0.1055 1.25E-04 8.03E+03 

4.80 0.0954 1.13E-04 8.88E+03 

5.60 0.0838 9.90E-05 l.OlE+04 

6.40 0.0751 8.87E-05 1.13E-H04 

7.20 0.0680 8.03E-05 1.25E+04 

8.00 0.0618 7.30E-05 1.37E+04 
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Table B-14. Kinetic data for a-fert-butyl-o-xylylene (11) dimerlzatlon 
measured at 44.45 °C in CH3CN 

Time, s Absorbance [111. M [111-1, M-1 

0.00 0.3936 4.65E-04 2.15E+03 

0.40 0.3069 3.62E-04 2.76E+03 

0.80 0.2515 2.97E-04 3.37E+03 

1.20 0.2124 2.51E-04 3.99E+03 

1.60 0.1837 2.17E-04 4.61E+03 

2.00 0.1616 1.91E-04 5.24E+03 

2.40 0.1439 1.70E-04 5.88E+03 

2.80 0.1296 1.53E-04 6.53E+03 

3.20 0.1189 1.40E-04 7.12E+03 

3.60 0.1021 1.21E-04 8.29E+03 

4.00 0.0943 l.llE-04 8.98E+03 

4.40 0.0898 1.06E-04 9.43E+03 

4.80 0.0847 l.OOE-04 l.OOE+04 

5.20 0.0790 9.33E-05 1.07E+04 

5.60 0.0750 8.86E-05 1.13E+04 

6.00 0.0707 8.35E-05 1.20E+04 

6.40 0.0670 7.91E-05 1.26E+04 

6.80 0.0643 7.59E-05 1.32E+04 
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Table B-IB. Kinetic data for a-tert-butyl-o-xylylene (11) dlmerlzatlon 
measured at 44.45 °C in CH3CN 

Time, s Absorbance [111. M [111-1. M-1 

0.00 0.4209 4.97E-04 2.01E+03 

0.40 0.3260 3.85E-04 2.60E+03 

0.80 0.2637 3.11E-04 3.21E+03 

1.20 0.2208 2.61E-04 3.84E+03 

1.60 0.1902 2.25E-04 4.45E+03 

2.00 0.1666 1.97E-04 5.08E+03 

2.40 0.1474 1.74E-04 5.74E+03 

2.80 0.1119 1.32E-04 7.57E+03 a 

3.20 0.1022 1.21E-04 8.29E+03 (I 

3.60 0.1002 1.18E-04 8.45E+03 ° 

4.00 0.0953 1.13E-04 8.89E+03 

4.40 0.0885 1.05E-04 9.57E+03 

4.80 0.0824 9.73E-05 1.03E+04 

5.20 0.0780 9.21E-05 1.09E+04 

5.60 0.0740 8.74E-05 1.14E+04 

6.00 0.0697 8.23E-05 1.21E+04 

6.40 0.0666 7.86E-05 1.27E+04 

6.80 0.0624 7.37E-05 1.36E+04 
" These data deviate from the second order decay curve of 11 and are Ignored in the 

linear regression for the rate constant determination 
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Table B-16. Kinetic data for a-tert-butyl-o-xylylene (11) dlmerlzatlon 
measured at 44.45 °C in CH3CN 

Time, s Absorbance 111], M [111-1, M-1 

0.00 0.4044 4.78E-04 2.09E+03 

0.40 0.3111 3.67E-04 2.72E+03 

0.80 0.2536 2.99E-04 3.34E+03 

1.20 0.2138 2.52E-04 3.96E+03 

1.60 0.1841 2.17E-04 4.60E+03 

2.00 0.1623 1.92E-04 5.22E+03 

2.40 0.1295 1.53E-04 6.54E+03 a 

2.80 0,1095 1.29E-04 7.73E+03 a 

3.20 0.1082 1.28E-04 7.83E+03 ° 

3.60 0.1022 1.21E-04 8.29E+03 

4.00 0.0953 1.13E-04 8.89E+03 

4.40 0.0888 1.05E-04 9.54E+03 

4.80 0.0822 9.71E-05 1.03E+04 

5.20 0.0750 8.86E-05 1.13E+04 

5.60 0.0710 8.38E-05 1.19E+04 

6.00 0.0673 7.95E-05 1.26E+04 

6.40 0.0636 7.51E-05 1.33E+04 

6.80 0.0618 7.30E-05 1.37E+04 
" These data deviate from the second order decay curve of 11 and are Ignored in the 

linear regression for the rate constant determination 
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Table B-17. Rate constants for the dimerlzatlon of 11 at various temperatures 

Dimerlzatlon. rate constant k2 for 11, 

Temperature. °C Trial 1 Trial 2 Trial 3 average 

14.75 7.860E+02 7.696E+02 7.908E+02 782 ± 11 

23.85 1.027E+03 1.036E+03 1.027E+03 1029 ± 5 

29.65 1.147E+03 1.168E+03 1.154E+03 1156+ 10 

37.10 1.463E+03 1.445E+03 1.454E+03 1454 ±9 

44.45 1.657E+03 1.763E+03 1.725E+03 1715 ±53 
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Table C-1. Compositions of the solution A for 9 (Trial 1) 

Concentration 

Solution A volume, mL Methyl 
methaciylate, M 

Precursor 9, M Diphenyl-
methane , M 

1 10 3.009x10-2 1.079x10-3 3.971x10-4 

2 10 6.019x10-2 1.079x10-3 3.971x10-4 

3 10 9.028x10-2 1.079x10-3 3.971x10-4 

4 10 12.04x10-2 1.079x10-3 3.971x10-4 

5 10 15.05x10-2 1.079x10-3 3.971x10^4 

Table C-2. Compositions of the solution A for 9 (Trial 2) 

Concentration 

Solution A volume, mL Methyl 
methaciylate, M 

Precursor 9, M Diphenyl-
methane , M 

1 10 3.251x10-2 1.045x10-3 4.589x10-4 

2 10 6.502x10-2 1.045x10-3 4.589x10-4 

3 10 9.753x10-2 1.045x10-3 4.589x10-4 

4 10 12.04x10-2 1.045x10-3 4.589x10-4 

5 10 16.25x10-2 1.045x10-3 4.589x10-4 
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Table C-3. Kinetic data for competition experiments^ of dimerization and 
Diels-Alder reaction of o-QDM 9 at 0.20 °C 

[MMA]b. 10-2M D2/DAC(exptl.) D2/DAC(calcd.4 

1.505 4.67810.070 4.264 

3.009 2.535±0.037 2.432 

4.514 1.738±0.029 1.749 

6.019 1.343±0.017 1.382 

7.523 1.070+0.004 1.151 
The data are derived from solution A listed in Table XIII. 

^ The concentration of methyl methacrylate which is equal to one half of the original 
concentration after being mixed with equal volume of TBAF solution. 
The final dimerization products to Diels-Alder adducts ratio. 

d The ratio is calculated on the basis of the rate constant ratio found by a 
non-linear curve fitting from the experimental data. The rate constant ratio 
k2/kDA=476±16. 
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Table C-4. Kinetic data for competition experiments" of dtaierlzatlon and 
Dlels-Alder reaction of o-QDM 9 at 8.40 °C 

[MMA]^, 10-2M Dg/DACfexptl.) Dg/DAC (calcd.4 

1.626 4.064±0.115 3.685 

3.251 2.253+0.079 2.101 

4.877 1.450±0.032 1.510 

6.024 1.293±0.018 1.270 

8.128 0.8950+0.045 0.9915 
^ The data are derived from solution A listed In Table XIV. 
^ The concentration of methyl methacrylate which Is equal to one half of the original 

concentration after being mixed with equal volume of TBAF solution. 
^ The final dlmerizatlon products to Dlels-Alder adducts ratio. 
d The ratio Is calculated on the basis of the rate constant ratio found by a 

non-linear curve fitting from the experimental data. The rate constant ratio 
k2/lqDA=44Q±18. 
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Table C-5. Kinetic data for competition experiments" of dimerization and 
Diels-Alder reaction of o-QDM 9 at 17.70 °C 

[MMAl^. lO'^M . D2/DAcrexptl.) D2/DAC (calcd.4 

1.505 3.97210.074 3.612 

3.009 2.13510.013 2.059 

4.514 1.45410.009 1.480 

6.019 1.145+0.056 1.168 

7.523 0.907210.034 0.9714 
° The data are derived from solution A listed in Table XIII. 
^ The concentration of methyl methacrylate which is equal to one half of the original 

concentration after being mixed with equal volume of TBAF solution. 
^ The final dimerization products to Diels-Alder adducts ratio. 
d The ratio is calculated on the basis of the rate constant ratio found by a 

non-lineeir curve fitting from the experimental data. The rate constant ratio 
k2/kDA=385±13. 
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Table C-6. Kinetic data for competition experiments" of dimerization and 
Diels-AIder reaction of o-QDM 9 at 21.30 °C 

IMMAl^, IQ-^M D2/DAg(exptl.) Dg/DAC (calcd.4 

1.505 3.74710.172 3.481 

3.009 2.06i±0.040 1.984 

4.514 1.400±0.062 1.425 

6.019 1.110+0.043 1.125 

7.523 0.879±0.002 0.935 
^ The -data are derived from solution A listed in Table XIII. 
^ - The concentration of methyl methaciylate which is equal to one half of the original 

concentration after being mixed with equal volume of TBAF solution. 
The final dimerization products to Dlels-Alder adducts ratio 

d The ratio is calculated on the basis of the rate constant ratio found by a 
non-linear curve fitting from the experimental data. The rate constant ratio kg/ 
kDA=367±ll. 
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Table C-7. Kinetic data for competition experiments" of dimerization and 
Diels-Alder reaction of o-QDM 9 at 29.00 °C 

[MMA]^. lO'^M D2/DAC(exptI.) Dg/DAC (calcd.4 

1.626 3.477+0.084 2.934 

3.251 1.835+0.077 1.671 

4.877 1.133+0.078 1.199 

6.024 1.06510.021 1.007 

8.128 0.67110.074 0.784 
" The data are derived from solution A listed in Table XIV. 
^ The concentration of methyl methacrylate which Is equal to one half of the original 

concentration after being mixed with equal volume of TBAF solution. 
^ The final dimerization products to Diels-Alder adducts ratio. 
d The ratio is calculated on the basis of the rate constant ratio found by a 

non-linear curve fitting from the experimental data. The rate constant ratio 
k2/kDA=332±23. 
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Table C-8. Kinetic data for competition experiments" of dimerization and 
Dlels-Alder reaction of o-QDM 9 at 32.50 °C 

[MMAlfa, lO'^M D2/DAC(exptI.) ' D2/DAC (calcd.4 

1.505 3.297±0.134 3.076 

3.009 1.818+0.079 1.753 

4.514 1.281±0.032 1.258 

6.019 0.9702+0.018 0.9917 

7.523 0.8235+0.045 0.8235 
The data are derived from solution A listed In Table XIII. 

^ The concentration of methyl methacrylate which is equal to one half of the original 
concentration after being mixed with equal volume of TBAF solution. 

^ The final dimerization products to Diels-Alder adducts ratio. 
d The ratio is calculated on the basis of the rate Constant ratio found by a 

non-linear curve fitting from the experimental data. The rate constant ratio 
k2/kDA=315±10. 
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Table D-l. Compositions of the solution A for 11 (Trial 1) 

Concentration 

Solution A volume, mL Methyl 
methacrylate, M 

Precursor 11, 
M 

Diphenyl-
methane , M 

1 10 1.288x10-1 1.026x10-3 4.779x10-4 

2 10 2.040x10-1 1.026x10-3 4.779x10-4 

3 10 2.959x10-1 1.026x10-3 4.779x10-4 

4 10 3.720x10-1 1.026x10-3 4.779x10-4 

5 10 5.331x10-1 1.026x10-3 4.779x10-4 

Table D-2. Compositions of the solution A for 11 (Trial 2) 

Concentration 

Solution A volume, mL Methyl 
methacrylate, M 

Precursor 11, M Diphenyl-
methane , M 

1 10 1.157x10-1 1.180x10-3 5.231x10-4 

2 10 2.054x10-1 1.180x10-3 5.231x10-4 

3 10 2.844x10-1 1.180x10-3 5.231x10-4 

4 10 3.632x10-1 1.180x10-3 5.231x10-4 

5 10 5.288x10-1 1.180x10-3 5.231x10-4 
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Table D-3 Kinetic data for competition experiments" of dlmerlzatlon and 
Dlels-Alder reaction of o-QDM 11 at 2.90 °C 

[MMAl^, IQ-^M D2/DA<^(exptl.) D2/DAC (calcd.4 

0.644 5.12610.119 5.172 

1.020 3.614±0.198 3.561 

1.480 2,730±0.015 2.633 

1.860 2.26110.025 2.188 

2.665 1.52910.020 1.630 
" The data are derived from solution A listed in Table XV. 
^ The concentration of methyl methacrylate which is equal to one half of the original 

concentration after being mixed with equal volume of TBAF solution. 
^ The final dlmerlzatlon products to DIels-Alder adducts ratio. 
d The ratio is calculated on the basis of the rate constant ratio found by a non-linear 

curve fitting from the experimental data. The rate constant ratio kg/ kDA=2692162. 
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Table D-4. Kinetic data for competition experiments'^ of dlmerlzatlon and 
DIels-Alder reaction of o-QDM 11 at 3.40 °C 

[MMA]^, lO'^M. D2/DAC(exptl.) Dg/DAC (calcd.4 

0.578 6.664±0.183 6.176 

1.027 3.995+0.097 3.871 

1.422 2.949+0.092 2.973 

1.816 2.24Q±0.116 2.439 

2.644 1.809+0.018 1.797 
" The data are derived from solution A listed In Table XVI. 
^ The concentration of methyl methaciylate which Is equal to one half of the original 

concentration after being mixed with equal volume of TBAF solution. 
^ The final dlmerlzatlon products to Diels-Alder adducts ratio. 
d The ratio Is calculated on the basis of the rate constant ratio found by a non-linear 

curve fitting from the experimental data. The rate constant ratio kg/ kDA=2618±86. 
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Table D-5 Kinetic data for competition experiments" of dimerization and 
Diels-Alder reaction of o-QDM 11 at 10.10 °C 

[MMA]^, IQ-^M D2/DAC(exptl.) D2/DAC (calcd.4 

0.644 4.19810.008 4.268 

1.020 2.96310.052 2.939 

1.480 2.149+0.005 2.173 

1.860 1.875+0.007 1.805 

2.665 1.32310.002 1.343 
° The data are derived from solution A listed in Table XV. 
^ The concentration of methyl methacrylate which Is equal to one half of the original 

concentration after being mixed with equal volume of TBAF solution. 
The final dimerization products to Dlels-Alder adducts ratio. 

d The ratio is calculated on the basis of the rate constant ratio found by a non-linear 
curve fitting from the experimental data. The rate constant ratio k2/ kDA=2126+27. 
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Table D-6 Kinetic data for competition experiments'^ of dimerization and 
Diels-Alder reaction of o-QDM 11 at 15.80 °C 

[MMAlb 10-lM D2/DAC(exptl.) D2/DAC (calcd.4 

0.578 5.057+0.196 5.025 

1.027 3.194+0.062 3.152 

1.422 2.406+0.023 2.421 

1.816 2.009±0.051 1.985 

2.644 1.42710.001 1.461 
° The data are derived from solution A listed in Table XVI. 
^ The concentration of methyl methaciylate which is equal to one half of the original 

concentration after being mixed with equal volume of TBAF solution. 
The final dimerization products to Diels-Alder adducts ratio. 

d The ratio is calculated on the basis of the rate constant ratio found by a non-linear 
curve fitting from the experimental data. The rate constant ratio k2/ kDA=2029±17. 
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Table D-7. Kinetic data for competition experiments" of dlmerizatlon and 
Dlels-Alder reaction of o-QDM 11 at 23.10 °C 

[MMAlfa, IQ-^M D2/DAC(exptl.) Dg/DAC (calcd.4 

0.644 3.598+0.044 3.558 

1.020 2.540+0.043 2.451 

1.480 1.847+0.039 1.811 

1.860 1.439+0.083 1.516 

2.665 1.110±0.044 1.117 
" The data are derived from solution A listed in Table XV. 
^ The concentration of methyl methacrylate which Is equal to one half of the original 

concentration after being mixed with equal volume of TBAF solution. 
^ The final dlmerizatlon products to Dlels-Alder adducts ratio. 
d The ratio lis calculated on the basis of the rate constant ratio found by a non-linear 

curve fitting from the experimental data. The rate constant ratio k2/ kDA= 1699132. 
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Table D-8. Kinetic data for competition experiments^ of dlmerization and 
Diels-Alder reaction of o-QDM 11 at 32.90 °C 

IMMA]^ 10-% D2/DAC(exptl.) D2/DAC (calcd.4 

0.578 3.662±0.005 

1.027 2..341+0.060 

1.422 1.776+0.038 

1.816 1.397+0.022 

2.644 1.04710.041 
" The data are derived from solution A listed in Table XVI. 
^ The concentration of methyl methaciylate which is equal to one half of the original 

concentration after being mixed with equal volume of TBAF solution. 
The final dimerization products to Diels-Alder adducts ratio. 

d The ratio is calculated on the basis of the rate constant ratio found by a non-linear 
curve fitting from the experimental data. The rate constant ratio k2/ kDA=1366+15. 

3.645 

2.287 

1.756 

1.438 

1.055 
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Table D-9. Kinetic data for competition experiments" of dlmerizatlon and 
Dlels-Alder reaction of o-QDM 11 at 33.35 °C 

IMMA]b 10-lM D2/PAC(exptl.) D2/DAC(calcd.d) 

0.644 3.12210.047 2.861 

1.020 2.100±0.060 2.019 

1.480 1.442±0.012 1.491 

1.860 1.191±0.021 1.236 

2.665 0.8847±0.008 0.9164 
° The data are derived from solution A listed in Table XV. 
^ The concentration of methyl methaciylate which is equal to one half of the original 

concentration after being mixed with equal volume of TBAF solution. 
^ The final dlmerizatlon products to Diels-Alder adducts ratio. 
d The ratio Is calculated on the basis of the rate constant ratio found by a non-linear 

curve fitting from the experimental data. The rate constant ratio k2/ kDA=1332±34. 
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Figure A-1. NMR spectrum (300 MHz, CDCI3) of the dlmer mixture of a-methyl-o-xylylene (9). 
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NMR spectrum (300 MHz, CDCI3) of the [4+2] dimer 27 of a-methyl-o-xylylene (9) (s: 
chloroform, w: HgO, i: impurities, D: dimer 27). 
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Figure A-3. 

0  P P M  
Ir NMR spectrum (300 MHz, CDCI3) of the (4+2) dimer 28 of a-methyl-o-xylylene (9) (s; 
chloroform, w: H2O, H: high boiling residue from hexanes, the eluent, i: impurities, D: dimer 28). 
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NMR spectrum (300 MHz, CDCI3) of the [4+2) dimer 29 of a-methyl-o-xylylene (9) (s; 

chloroform, w: H2O, H: high boiling residue from hexanes, the eluent, D: dimer 29). 
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6 4. Z Q PPM 
NMR spectrum (300 MHz, CDCI3) of the (4+2) dimer 30 of a-methyl-o-jqrlylene (9) (s; 

chloroform, w: HgO. H; high boiling residue from hexanes, the eluent, D; dimer 30). 
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NMR spectrum (300 MHz, CDCI3) of the dîmer mixture of a-cyclopropyl-o-xylylene (10) (s: 

chloroform, w: H2O, H: high boiling residue from hexanes, the eluent). 
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Figure A-7. 

6 4 2. 0 ppm. 
NMR spectrum (300 MHz, CDCI3) of the [4+2] dimer 31 of 

a-cyclopropyl-o-xylylene (10) (s: chloroform, w; HgO, H; high 
boiling residue from hexanes, the eluent, D; dimer 31). 
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Figure A-8. NMR spectrum (300 MHz, CDCI3) of the [4+2] dimer 32 of a-cyclopropyl-o-:qrlylene (10) (s: 
chloroform, w; HgO, H: high boiling residue from hexanes. the eluent, D; dimer 32). 
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Figure A-9. NMR spectrum (300 MHz, CDCI3) of the (4+2] dimer 33 of a-cyclopropyl-o-3^1ylene (10) (s; 

chloroform, w: H2O, H: high boiling residue from hexanes, the eluent, D: dimer 33). 
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NMR spectrum (300 MHz, olefin to alphatic region, CDCI3) of the [4+21 dimer 34 and 35 of 
a-cyclopropyl-o-jq^lylene (10) (w: HgO, A or A': exo-methylene protons of 34 and 35, X or X": 
benzylic protons adjacent to the cyclopropyl group). 
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Figure A-11. NMR spectrum (300 MHz. CDCI3) of the [4+41 dimer 36 of a-cyclopropyl-o-xylylene (10) 
chloroform, w; H2O. H: high boiling residue from hexeines, the eluent, D: dimer 36. Some 
cyclopropyl ring proton signals are covered by the signals of high boiling hydrocarbons). 
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Figure A-12. NMR spectrum (300 MHz, CDCI3) of the [4+4] dimer 37 of a-cyclopropyl-o-xylylene (10) (s: 
chloroform, c: dlchloroform, w: H2O, H: high boiling residue from hexanes. the eluent. D: dimer 
37). 
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Figure A-13. NMR spectrum (300 MHz, CDCI3) of the dlmer mixture of a-terf-butyl-o-xylylene (11). 
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Figure A-14. 1h NMR spectrum (300 MHz, CDCI3) of the 14+2] dlmer 40 of a-tert-butyl-o-:!qrlylene (11). 
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NMR spectrum (300 MHz, CDCI3) of the [4+4] dimer 41 of 
a-tert-butyl-o-xyfylene (11) (s; chloroform, w; HgO. H: high boiling 
residue from hexanes, the eluent, D: dimer 41). 
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Figure A-16. 

6 4 2 0 ppm. 

NMR spectrum (300 MHz, CDCI3) of the thermally less stable [4+4] 
dimer 42 of a-terf-butyl-o-xylylene (11) (s: chloroform, w: HgO, X; 
impurities, D: dimer 42). 
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Figure A-17. NMR spectrum (300 MHz, CDCI3) of the thermally more stable 14+4] 
dimer 42 of a-tert-butyl-o-xylylene (11) (s: chloroform, w: HgO. H: high 
boiling residue from hexanes, the eluent, D: dimer 42). 
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NMR spectrum (300 MHz, CDCI3) of the dimer mixture of a-mesityl-o-xylylene (12). 
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NMR spectrum (300 MHz, CDCI3) of the [4+2] dimer 43 of a-mesityl-o-xylylene (12) 

(s: chloroform, w; HgO, H: high boiling residue from hexanes, the eluent, D: dimer 43). 
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Ir NMR spectrum (300 MHz, CDCI3) of the [4+4] dimer 44 of 
a-mesltyl-o-xyfylene (12) (s: chlorofonn. w: HgO. H: high boiling residue 
from hexanes, D: dimer 44). 
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NMR spectrum (300 MHz, CDCI3) of the reduction product 45 in the ther
molysis of (4+21 dimer 43 in thiophenol at 180 «C in a sealed tube condition (s: 
chloroform, w: H2O, H: high boUing residue from hexanes, D: dimer 45). 
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Figure A-22 Closeup of the aliphatic region of the NMR spectrum (300 
MHz, CDCI3) of the Dlels-.AJder reaction products of 
a-methyl-o-xylylene (9) and methyl methaciylate. (a) Spin-spin 
decoupling with irradiation at the methyl proton at 1.09 ppm. 
(b) Normal. 
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Figure A-23 Closeup of the aliphatic region of the NMR spectrum (300 
MHz, CDCI3) of the Diels-Alder reaction products of 
a-methyl-o-xylylene (9) and methyl methaciylate. (a) Spin-spin 
decoupling with irradiation at the methyl proton at 1.18 ppm. 
(b) Normal. 
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Gas chromatograph (DBl, temperature program 80 °C, 5 °C/mln. 250 °C) of 
the Diels-Alder reaction products of a-methyl-o-^grlylene (9) and methyl 
methaciylate (A: Diels-Alder adducts). 
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Figure A-25 NMR spectrum (300 MHz. CDCI3) of the Diels-Alder reacUon 

products of a-cyclopropyl-o-xylylene (10). 
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Figure A-26 Closeup of the aliphatic region of the NMR spectrum (300 
MHz. CDCI3) of the major two Diels-Alder adducts of 
a-cyclopropyl-o-xylylene (10) and methyl methacrylate. (a) 
Spin-spin decoupling with irradiation at the 
cyclopropyl-ring proton at 0.08 ppm. (b) Normal. 
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Figure A-27 Gas chromatograph (DBl, temperature program 200 °C) of the Diels-Alder 
reaction products of a-cyclopropyl-o-xylylene (10) and methyl methaciylate (A: 
Diels-Alder adducts). 
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Figure A-28 Ir NMR spectrum (300 MHz, CDCI3) of the Diels-Alder reaction 
products of a-tert-butyl-o-xylylene (11) and methyl methacrylate (s: 
chloroform, w: H2O). 
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NMR spectrum (300 MHz, CDCI3) of component 1 of Dials-Aider reaction 
products of a-tert-butyl-o-xylylene (11) and methyl methacrylate (s; 
chloroform, w: HgO, A; DIels-Alder adducts). 
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NMR spectrum (300 MHz, CDCI3) of component 2 of Diels-Alder reaction 
products of a-tert-butyl-o-xylylene (11) and methyl methacrylate (s; 
chloroform, w: H2O, H: high boiling hydrocarbon from the chromatography 
eluent, hexanes, A; Diels-Alder adducts). 
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NMR Spectrum (300 MHz, CDCI3) of component 3 of Diels-Alder reaction 
products of a-tert-butyl-o-jqrlylene (11) and methyl methacrylate (s: 
chloroform, w: HgO, A; Diels-Alder adducts). 
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NMR spectrum (300 MHz, CDCI3) of component 4 of Dlels-Alder reaction 
products of a-terf-butyl-o-xylylene (11) and methyl methacrylate (s: 
chloroform, w; HgO, A; Dlels-Alder adducts). 
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Figure A-33 Gas chromatograph (DBl, temperature program 100 10 ®C/min, 
250 °C) of the Diels-Alder reaction products of a-mesityl-o-xylylene (11) 
and methyl methacrylate (D: Diels-Alder adducts). 
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NMR spectrum (300 MHz, CDCI3) of component 1, (contaminated with 30 % of component 
4) of Diels-Alder reaction products of a-mesItyl-o-:jqrlylene (12) and methyl methaciylate (s: 
chloroform, w: H2O. H: high boiling hydrocarbons from the chromatography eluent, hexanes, 
i: component 4, D: component 1). 
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Figure A-35 NMR spectrum (300 MHz, CDCI3) of a mixture component 2 and 3 of 
Dlels-Alder reaction products of a-mesityl-o-xylylene (12) and methyl 
methacrylate (s. chloroform, w: HgO, H: high boiling hydrocarbons from 
the chromatography eluent, hexanes, D: conponent 3, 1. component 4). 
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NMR spectrum (300 MHz, CDCI3) of component 4 of the 

Diels-Alder reaction products of a-mesityl-o-:!grlylene (12) 
and methyl methacrylate (s: chloroform, w: HgO, H: high 
boiling hydrocarbons from the chromatography eluent, 
hexanes, D: component 4, X: impurities). 
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Figure A-37 Gas chromatograph (DBl, temperature program 120 °C, 5 
min, 10 °C/min, 200 °C, 10 min) of the Diels-Alder reaction 
products of a-mesityl-o-xylylene (12) and methyl 
methacrylate: (a) without methyl methacrylate, (b) with 
methyl methacrylate (A: Diels-Alder adducts). 
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Figure A-38 UV-vlsable spectra of a-tert-butyl-o-xyfylene (11) and its subsequent 
dimerlzation at room temperature, (a) t = 0 min, (b) t = 0.09 min, (c) t = 0.27 
min, (d) 0.36 min, (e) 0.45 min, (I) 0.54 min. 
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Figure A-39. The Beer's plot for a-methyl-o-xylylene (9). 
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Figure A 40. Eyring plot for the dlmerlzatlon of a-methyl-o-xylylene (9) 
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Figure A-41. The Beer's plot for a-tert-butyl-o-xylylene (11) 
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Figure A-42 Eyring plot for the dlmerization of a-ier£-butyl-o-xylylene (11). 
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for the Diels-Alder reaction and the dimerization of o-QDM 
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Figure 44. The thermodynamically-stable conformation, predicted by MM-X 
calculations, of CLS-[4+4] dimer 42. 
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Figure 45. The thermodynamically stable conformation, predicted by MM-X 
calculations, of the (rans-[4+4] dimer 43. 
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GENERAL SUMMARY 

Effects of the a-substitutlons on the termini of the reactive dlene unit of 

o-qulnodlmethanes revealed a non-concerted mechanism for furan-based and 

benzene-based o-qulnodlmethane (o-QDM) dimerizations. 

In section one, the co-existence of the cisold (8) and transold (9) transition 

states in the diradical formation step is evidenced by the stereochemistry of the dimers. 

In view of the results of the furan-based o-QDM dimerizations, we believe that the 

regloselectlvity in the diradical cyclization step is controlled mainly by the interaction 

between the active sites on the furan moieties in the diradical ring closure step, not by 

the internal bond rotations of the carbon chain of the diradical intermediate. 

In section two, we found that the trend of the regloselectlvity, along the size of 

the a-substltuents, of benzene-based o-QDM dimerizations is opposite to that of the 

Dlels-Alder reactions. On the basis of the trends, we suggest that the Dlels-Alder 

reaction mechanism of benzene-based o-QDM's is concerted while the dlmerlzatlon 

mechanism of benzene-based o-QDM's is stepwise. Because of their similar activation 

parameters, we propose that the parent o-xylylene (1*) and other o-xylylenes 9'-12' 

dimerize via a similar two step, diradical mechanism. 
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